

Graphical extensions \& subsetting

Hadley Wickham

1. Interesting facts
2. Reading scatterplots
3. Scatterplots for big data
4. Introduction to subsetting

Interestine rects

Your interesting facts

6x speak three or more lanugages
3x mentioned canada
$2 x$ black belt in taekwondo
2x likes alpacas/llamas
1 x ridden an ostrich

Beadine scetiterplois

Look for structure

- Global patterns
- Local patterns
- Deviations

Strong linear relationship. A number of outliers.

Idea	ggplot
Small points	shape $=\mathrm{I}(" . ")$
Transparency	alpha $=\mathrm{I}(1 / 50)$
Jittering	geom $=$ "jitter"
Smooth curve	geom $=$ "smooth"
2d bins	geom $=$ "bin2d" or geom $=$ "hex"
Density contours	geom $=$ "density2d" Boxplotsgeom $=$ "boxplot" + group $=\ldots$

\# There are two ways to add additional geoms
\# 1) A vector of geom names: qplot(price, carat, data = diamonds, geom $=c(" p o i n t ", \quad$ smooth"))
\# 2) Add on extra geoms qplot(price, carat, data = diamonds) + geom_smooth()
\# This is how you get help about a specific geom: \# ?geom_smooth
\# To set aesthetics to a particular value, you need \# to wrap that value in I()
qplot(price, carat, data = diamonds, colour = "blue") qplot(price, carat, data = diamonds, colour = I("blue"))
\# Practical application: varying alpha
qplot(carat, price, data = diamonds, alpha = I(1/10))
qplot(carat, price, data = diamonds, alpha = I(1/50))
qplot(carat, price, data = diamonds, alpha = I(1/100))
qplot(carat, price, data = diamonds, alpha = I(1/250))
qplot(table, price, data = diamonds) qplot(table, price, data = diamonds, geom = "boxplot")
\# Need to specify grouping variable: what determines \# which observations go into each boxplot qplot(table, price, data = diamonds, geom = "boxplot", group = round_any(table, 1))
qplot(table, price, data = diamonds, geom = "boxplot", group = round_any(table, 1)) + xlim(50, 70)

Your turn

Explore the relationship between carat, price and cut using these techniques.
(i.e. make this plot more informative:
qplot(carat, price, data $=$ diamonds, colour = cut))
Which did you find most useful?

Motivation

To explore the relationship between x and y we need to remove the obvious incorrect values.

To modify, must first know how to extract, or subset.

Many different methods available in R. We'll start with most explicit then learn some shortcuts next time.

Subsetting

Run the following two lines of code to create two vectors:
$x<-$ sample(1:10)
$y<-\operatorname{setNames}(x, \operatorname{letters}[1: 10])$
Next, run the code on the following slide and figure out the four types of things you can subset with.

$$
\begin{aligned}
& x[1: 4] \\
& x[x==5] \\
& y[\operatorname{order}(y)] \\
& x[] \\
& x[-1] \\
& y\left[" a^{\prime \prime}\right] \\
& x[x] \\
& x[x>2 \& x<9] \\
& x[\operatorname{sample}(10)] \\
& x[\operatorname{order}(x)] \\
& x[-(1: 5)] \\
& x[" a "] \\
& y[l e t t e r s[10: 1]] \\
& x[x<2 \mid x>=8] \\
& x[-1: 5] \\
& x[0]
\end{aligned}
$$

blank include all

\author{

+ ve: include
 integer
 0 : include none
 -ve: exclude
}
logical keep TRUEs
character lookup by name

```
# Everything
str(diamonds[, ])
# Positive integers & nothing
diamonds[1:6, ] # same as head(diamonds)
diamonds[, 1:4] # watch out!
# Two positive integers in rows & columns
diamonds[1:10, 1:4]
# Repeating input repeats output
diamonds[c(1,1,1,2,2), 1:4]
# Negative integers drop values
diamonds[-(1:53900), -1]
```

\# Use logical comparisons to describe which values you want. Comparison functions:
$\#<><=>=$!= == \%in\%
x_big <- diamonds\$x > 10
head(x_big)
sum(x_big)
mean(x_big)
table(x_big)
diamonds\$x[x_big]
diamonds[x_big,]
small <- diamonds[diamonds\$carat < 1,]
lowqual <- diamonds[diamonds\$clarity \%in\% c("I1", "SI2", "SI1"),]
\# Boolean operators: \& | ! small <- diamonds\$carat < 1 \& diamonds\$price > 500
lowqual <- diamonds\$colour == "D" | diamonds\$cut == "Fair"

()	a
()	b
0	$\mathrm{a} \mid \mathrm{b}$
()	a \& b
0	a \& ! b
0	$\operatorname{xor}(\mathrm{a}, \mathrm{b})$

\# Common mistakes
diamonds[diamonds\$color == "D" | "E" | "F",] diamonds[diamonds\$carat < 1 \& > 2]
diamonds[diamonds\$cut = "Good",]

Your turn

Select the diamonds that have:
Equal x and y dimensions.
Depth between 55 and 70 .
Carat smaller than the mean.
Cost more than \$10,000 per carat.
Are of good quality or better.

