
Hadley Wickham

Stat405
Working directories, shortcuts & iteration

Tuesday, September 4, 12

• Lectures 1-3: basic graphics

• Lectures 4-6: basic data handling
• Lectures 7-9: basic functions

• The absolutely most essential tools. Rest
of course is building your vocab, and
learning how to use them all together.

Roadmap

Tuesday, September 4, 12

1. Working directory

2. Shortcuts

3. Iteration

Tuesday, September 4, 12

Working
directory

Tuesday, September 4, 12

All paths in R are relative to the working
directory. Life is much easier when you
have it correctly set.
Usually want one project per directory.
(See also Rstudio’s project support)
Makes code easy to move between
computers. Never use setwd() in a script.

Why?

Tuesday, September 4, 12

Rstudio: Tools | Set working directory |
Choose directory ... (⌃⇧K)

Windows: File | Change dir. For frequent
use, make shortcut in that folder.

Mac: ⌘D

Terminal: start R from the desired
directory

How?

Tuesday, September 4, 12

Find out what directory you’re in
getwd()

List files in that directory
dir()

Tuesday, September 4, 12

If you haven’t already, create a directory
for homework 2.
Download the dataset into that directory.
Switch working directories and load the
dataset.

Your turn

Tuesday, September 4, 12

Uses size on screen:
ggsave("my-plot.pdf")
ggsave("my-plot.png")

Specify size
ggsave("my-plot.pdf", width = 6, height = 6)

Plots are saved in the working directory
getwd()

Tuesday, September 4, 12

PDF PNG

Vector based
(can zoom in infinitely)

Raster based
(made up of pixels)

Good for most
plots

Good for plots
with thousands of

points

Tuesday, September 4, 12

Your turn

Draw a plot of carat vs. price. Save as
pdf and png. What are the differences?
Where did the files save?

Tuesday, September 4, 12

Short cuts

Tuesday, September 4, 12

Short cuts
You’ve been typing diamonds many many
times. These following shortcuts save
typing, but may be a little harder to
understand, and will not work in some
situations. (Don’t forget the basics!)
Four specific to data frames, one more
generic.

Tuesday, September 4, 12

Function Package

subset base

summarise plyr

mutate plyr

arrange plyr

load plyr with library(plyr).
base always automatically loaded

Tuesday, September 4, 12

They all have similar syntax. The first argument
is a data frame, and all other arguments are
interpreted in the context of that data frame
(so you don't need to use data$ all the time)

library(plyr)
subset(df, subset)
mutate(df, var1 = expr1, ...)
summarise(df, var1 = expr1, ...)
arrange(df, var1, ...)

They all return a modified data frame. You still
have to save that to a variable if you want to
keep it

Tuesday, September 4, 12

subset(df, color == "blue")

color value
blue 1
black 2
blue 3
blue 4
black 5

color value
blue 1
blue 3
blue 4

Tuesday, September 4, 12

subset: short cut for subsetting
zero_dim <- diamonds$x == 0 | diamonds$y == 0 |
 diamonds$z == 0
diamonds[zero_dim,]

subset(diamonds, x == 0 | y == 0 | z == 0)

Tuesday, September 4, 12

summarise(df, double = 2 * value)

color value
blue 1
black 2
blue 3
blue 4
black 5

double
2
4
6
8
10

Tuesday, September 4, 12

summarise(df, total = sum(value))

color value
blue 1
black 2
blue 3
blue 4
black 5

total
15

Tuesday, September 4, 12

summarise/summarize: short cut for creating
a summary

biggest <- data.frame(
 price.max = max(diamonds$price),
 carat.max = max(diamonds$carat))

biggest <- summarise(diamonds,
 price.max = max(price),
 carat.max = max(carat))

Tuesday, September 4, 12

mutate(df, double = 2 * value)

color value
blue 1
black 2
blue 3
blue 4
black 5

color value double
blue 1 2
black 2 4
blue 3 6
blue 4 8
black 5 10

Tuesday, September 4, 12

mutate(df, double = 2 * value,
quad = 2 * double)

color value
blue 1
black 2
blue 3
blue 4
black 5

color value double quad
blue 1 2 4
black 2 4 8
blue 3 6 12
blue 4 8 16
black 5 10 20

Tuesday, September 4, 12

mutate: short cut for adding new variables
diamonds$volume <- diamonds$x * diamonds$y * diamonds$z
diamonds$density <- diamonds$volume / diamonds$carat

diamonds <- mutate(diamonds,
 volume = x * y * z,
 density = volume / carat)

Tuesday, September 4, 12

arrange(df, color)

color value
4 1
1 2
5 3
3 4
2 5

color value
1 2
2 5
3 4
4 1
5 3

Tuesday, September 4, 12

arrange(df, desc(color))

color value
4 1
1 2
5 3
3 4
2 5

color value
5 3
4 1
3 4
2 5
1 2

Tuesday, September 4, 12

arrange: short cut for reordering
diamonds <- diamonds[order(diamonds$price,
 desc(diamonds$carat)),]

diamonds <- arrange(diamonds, price, desc(carat))

Tuesday, September 4, 12

Use summarise, mutate, subset and arrange to:

Find all diamonds bigger than 3 carats and
order from most expensive to cheapest.
Add a new variable that estimates the
diameter of the diamond (average of x and y).
Compute depth (z / diameter * 100) yourself.
How does it compare to the depth in the data?

Your turn

Tuesday, September 4, 12

arrange(subset(diamonds, carat > 3), desc(price))
subset(arrange(diamonds, desc(price)), carat > 3)
biggest <- subsets(diamonds, carat > 3)
arrange(biggest, desc(price)

diamonds <- mutate(diamonds,
 diameter = (x + y) / 2,
 depth2 = z / diameter * 100)

qplot(depth, depth2, data = diamonds)
qplot(depth - depth2, data = diamonds)

Tuesday, September 4, 12

Aside:
never use attach!

Non-local effects; not symmetric; implicit,
not explicit.
Makes it very easy to make mistakes.
Use one of the shortcuts we just
discussed or with():
with(diamonds, table(color, clarity))

Tuesday, September 4, 12

with is more general. Use in concert with other
functions, particularly those that don't have a data
argument

diamonds$volume <- with(diamonds, x * y * z)

This won't work:
with(diamonds, volume <- x * y * z)
with only changes lookup, not assignment

Tuesday, September 4, 12

Iteration

Tuesday, September 4, 12

Transform

Visualise

Model

Tuesday, September 4, 12

Best data analyses tell a story, with a
natural flow from beginning to end.
For homeworks, try and come up with a
sequence that tell a story. Biggest
mistake is stopping too early.
Stories about a small sample of the data
can work well.

Stories

Tuesday, September 4, 12

qplot(x, y, data = diamonds)
qplot(x, z, data = diamonds)

Start by fixing incorrect values
y_big <- diamonds$y > 10
z_big <- diamonds$z > 6

x_zero <- diamonds$x == 0
y_zero <- diamonds$y == 0
z_zero <- diamonds$z == 0

diamonds$x[x_zero] <- NA
diamonds$y[y_zero | y_big] <- NA
diamonds$z[z_zero | z_big] <- NA

Tuesday, September 4, 12

qplot(x, y, data = diamonds)
How can I get rid of those outliers?

qplot(x, x - y, data = diamonds)
qplot(x - y, data = diamonds)
qplot(x - y, data = diamonds, binwidth = 0.01)
last_plot() + xlim(-0.5, 0.5)
last_plot() + xlim(-0.2, 0.2)

asym <- abs(diamonds$x - diamonds$y) > 0.2
diamonds_sym <- diamonds[!asym,]

Did it work?
qplot(x, y, data = diamonds_sym)
qplot(x, x - y, data = diamonds_sym)
Something interesting is going on there!
qplot(x, x - y, data = diamonds_sym,
 geom = "bin2d", binwidth = c(0.1, 0.01))

Tuesday, September 4, 12

What about x and z?
qplot(x, z, data = diamonds_sym)
qplot(x, x - z, data = diamonds_sym)

Subtracting doesn't work - z smaller than x and y
qplot(x, x / z, data = diamonds_sym)

But better to log transform to make symmetrical
qplot(x, log10(x / z), data = diamonds_sym)

...

Tuesday, September 4, 12

How does symmetry relate to price?
qplot(abs(x - y), price, data = diamonds_sym) +
 geom_smooth()
diamonds_sym <- mutate(diamonds_sym,
 sym = zapsmall(abs(x - y)))

Are asymmetric diamonds worth more?
qplot(sym, price, data = diamonds_sym) + geom_smooth()

qplot(sym, price, data = diamonds_sym, geom = "boxplot",
 group = sym)
qplot(sym, carat, data = diamonds_sym, geom = "boxplot",
 group = sym)

qplot(carat, price, data = diamonds_sym, colour = sym)
qplot(log10(carat), log10(price), data = diamonds_sym,
 colour = sym, group = sym) + geom_smooth(method = lm, se = F)

Tuesday, September 4, 12

Modelling

summary(lm(log10(price) ~ log10(carat) + sym,
 data = diamonds_sym))
But statistical significance != practical
significance

sd(diamonds_sym$sym, na.rm = T)
[1] 0.02368828

So 1 sd increase in sym, decreases log10(price)
by -0.01 (= 0.23 * -0.44)
10 ^ -0.01 = 0.976
So 1 sd increase in sym decreases price by ~2%

Tuesday, September 4, 12

