
Hadley Wickham

Stat405
Problem solving

Thursday, September 13, 12

1. Homework & project updates

2. Saving data

3. Slot machine challenge

Thursday, September 13, 12

Homework
(Common problems)

Thursday, September 13, 12

library(ggplot2)
mpg2 <- read.csv("mpg2.csv.bz2", stringsAsFactors = FALSE)

Be sceptical
recent <- subset(mpg2, year >= 1998 &
 fueltype %in% c("CNG", "Diesel", "Regular", "Premium"))
qplot(year, cty, data = recent, colour = fueltype,
 geom = "smooth")
qplot(year, cty, data = recent, colour = fueltype,
 geom = "jitter")

Be curious
qplot(year, cty, data = recent, geom = "boxplot", group = year) +
 facet_wrap(~ fueltype) +
 geom_smooth(colour = "red")

Thursday, September 13, 12

Project
• Due on Tuesday Sep 25
• Make sure to meet with Barret, Shaya or myself

for project review
• This week’s homework is pretty light: practice

code styling and loading and saving data. Work
on the project!

• Recommendation: reserve next week
(Thursday-Tuesday) for final polishing, printing
etc.

Thursday, September 13, 12

Project review
• Meetings will last about 15 minutes
• We’ll give you feedback on your current

direction, ask questions and offer suggestions.
The more you have to bring the better.

• Barret tomorrow 12-2, Me 2-5 tomorrow (in the
pavilion), Yeshaya 11-3 Monday

• Email all three of us and cc your team members.
• If one of those slots doesn't work, please

provide three time slots that work for your team.

Thursday, September 13, 12

Saving
data

Thursday, September 13, 12

Quiz

How do you load a csv file into R?
What’s the difference between a
character vector (string) and a factor?
When do you use strings? When do you
use factors?

Thursday, September 13, 12

Make sure your working directory is set correctly!

slots <- read.delim("slots.txt", sep = " ", header = F,
 stringsAsFactors = F)
names(slots) <- c("w1", "w2", "w3", "prize", "night")

levels <- c(0, 1, 2, 3, 5, 6, 7)
labels <- c("0", "B", "BB", "BBB", "DD", "C", "7")

slots$w1 <- factor(slots$w1, levels = levels, labels = labels)
slots$w2 <- factor(slots$w2, levels = levels, labels = labels)
slots$w3 <- factor(slots$w3, levels = levels, labels = labels)

Thursday, September 13, 12

Your turn
Guess the name of the function you might
use to write an R object back to a csv file
on disk. Use it to save slots to
slots-2.csv.

What happens if you now read in
slots-2.csv? Is it different to your slots
data frame? How?

Thursday, September 13, 12

write.csv(slots, "slots-2.csv")
slots2 <- read.csv("slots-2.csv")

head(slots)
head(slots2)

str(slots)
str(slots2)

Better, but still loses factor levels
write.csv(slots, file = "slots-3.csv", row.names = F)
slots3 <- read.csv("slots-3.csv")

Thursday, September 13, 12

Saving data

For long-term storage
write.csv(slots, file = "slots.csv",
 row.names = FALSE)

For short-term caching
Preserves factors etc.
saveRDS(slots, "slots.rds")
slots2 <- readRDS("slots.rds")

Thursday, September 13, 12

.csv .rds

read.csv() readRDS()

write.csv(
row.names = FALSE) saveRDS()

Only data frames Any R object

Plain text Binary

Thursday, September 13, 12

Plain text Binary

Human readable Machine readable

Easy to
understand Very fast to load

Big Small

Long term storage Short term
caching

Thursday, September 13, 12

Slot
machine
payoffs

Thursday, September 13, 12

Slots
Casino claims that slot machines have
prize payout of 92%. Is this claim true?
mean(slots$prize)

t.test(slots$prize, mu = 0.92)

qplot(prize, data = slots, binwidth = 1)

How can we do better?

Thursday, September 13, 12

Idea

We have enough information (distribution
of windows and payoffs) to simulate the
slot machine.
We could write code to simulate a single
pull, then run it thousands of times and
compare to 92%.

Thursday, September 13, 12

Strategy
1. Break complex tasks into smaller parts
2. Use words to describe how each part
should work
3. Translate words to R
4. When all parts work, combine into a
function (next class)

Thursday, September 13, 12

DD DD DD 800
7 7 7 80

 BBB BBB BBB 40
BB BB BB 25
B B B 10
C C C 10

Any bar Any bar Any bar 5
C C * 5
C * C 5
C * * 2
* C * 2
* * C 2

DD doubles any winning
combination. Two DD
quadruples. DD is wild.

Challenge: given e.g.

windows <- c("7", "C", "C")

how can we calculate the

payoff in R?

Thursday, September 13, 12

Your turn

We can simplify this table into 3 basic
cases of prizes. What are they? Take 3
minutes to brainstorm with a partner.

Thursday, September 13, 12

Cases

1. All windows have same value
2. A bar (B, BB, or BBB) in every window
3. Cherries and diamonds
4. (No prize)

Thursday, September 13, 12

Same values

Thursday, September 13, 12

Same values

1. Check whether all windows are the
same. How?

Thursday, September 13, 12

Same values

1. Check whether all windows are the
same. How?

2. If so, look up prize value. How?

Thursday, September 13, 12

Same values

1. Check whether all windows are the
same. How?

2. If so, look up prize value. How?

With a partner, brainstorm
for 2 minutes on how to
solve one of these problems

Thursday, September 13, 12

Same value

same <- length(unique(windows)) == 1

OR

same <- windows[1] == windows[2] &&
 windows[2] == windows[3]

if (same) {

 # Lookup value

}

Thursday, September 13, 12

&&, || vs. &, |

Use && and || to combine sub-conditions
and return a single TRUE or FALSE. && and
|| are “short-circuiting”: they do the
minimum amount of work
Different to & and | - these return vectors
when given vector.

Thursday, September 13, 12

if (condition) {

 expression

}

Condition should be a logical vector of
length 1

If

Thursday, September 13, 12

if (TRUE) {

 # This will be run

}

if (FALSE) {

 # This will be run

} else {

 # This will be

}

Single line form: (not recommended)

if (TRUE) print("True!)

if (FALSE) print("True!)

Thursday, September 13, 12

if (TRUE) {

 # This will be run

}

if (FALSE) {

 # This will be run

} else {

 # This will be

}

Single line form: (not recommended)

if (TRUE) print("True!)

if (FALSE) print("True!)

Note indenting.
Very important!

Thursday, September 13, 12

x <- 5
if (x < 5) print("x < 5")
if (x == 5) print("x == 5")

x <- 1:5
if (x < 3) print("What should happen here?")

if (x[1] < x[2]) print("x1 < x2")
if (x[1] < x[2] && x[2] < x[3]) print("Asc")
if (x[1] < x[2] || x[2] < x[3]) print("Asc")

Thursday, September 13, 12

if (window[1] == "DD") {
 prize <- 800
} else if (windows[1] == "7") {
 prize <- 80
} else if (windows[1] == "BBB") ...

Or use subsetting
c("DD" = 800, "7" = 80, "BBB" = 40)
c("DD" = 800, "7" = 80, "BBB" = 40)["BBB"]
c("DD" = 800, "7" = 80, "BBB" = 40)["0"]
c("DD" = 800, "7" = 80, "BBB" = 40)[window[1]]

Thursday, September 13, 12

Your turn

Complete the previous code so that if all
the values in win are the same, then prize
variable will be set to the correct amount.

Thursday, September 13, 12

All bars

How can we determine if all of the
windows are B, BB, or BBB?
(windows[1] == "B" ||
 windows[1] == "BB" ||
 windows[1] === "BBB") && ... ?

Thursday, September 13, 12

All bars

How can we determine if all of the
windows are B, BB, or BBB?
(windows[1] == "B" ||
 windows[1] == "BB" ||
 windows[1] === "BBB") && ... ?

Take 1 minute to brainstorm
possible solutions

Thursday, September 13, 12

windows[1] %in% c("B", "BB", "BBB")
windows %in% c("B", "BB", "BBB")

allbars <- windows %in% c("B", "BB", "BBB")
allbars[1] & allbars[2] & allbars[3]
all(allbars)

See also ?any for the complement

Thursday, September 13, 12

Your turn

Complete the previous code so that the
correct value of prize is set if all the
windows are the same, or they are all
bars

Thursday, September 13, 12

payoffs <- c("DD" = 800, "7" = 80, "BBB" = 40,
 "BB" = 25, "B" = 10, "C" = 10, "0" = 0)

same <- length(unique(windows)) == 1
allbars <- all(windows %in% c("B", "BB", "BBB"))

if (same) {
 prize <- payoffs[windows[1]]
} else if (allbars) {
 prize <- 5
}

Thursday, September 13, 12

Cherries

Need numbers of cherries, and numbers
of diamonds (hint: use sum)

Then need to look up values (like for the
first case) and multiply together

Thursday, September 13, 12

cherries <- sum(windows == "C")

diamonds <- sum(windows == "DD")

c(0, 2, 5)[cherries + 1] *

 c(1, 2, 4)[diamonds + 1]

Thursday, September 13, 12

payoffs <- c("DD" = 800, "7" = 80, "BBB" = 40,
 "BB" = 25, "B" = 10, "C" = 10, "0" = 0)

same <- length(unique(windows)) == 1
allbars <- all(windows %in% c("B", "BB", "BBB"))

if (same) {
 prize <- payoffs[windows[1]]
} else if (allbars) {
 prize <- 5
} else {
 cherries <- sum(windows == "C")
 diamonds <- sum(windows == "DD")

 prize <- c(0, 2, 5)[cherries + 1] *
 c(1, 2, 4)[diamonds + 1]
}

Thursday, September 13, 12

Writing a function

Now we need to wrap up this code in to a
reusable fashion. We need a function

Have used functions a lot, next time we’ll
learn how to write one.

Thursday, September 13, 12

