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Stat405
Problem solving

Thursday, September 13, 12



1. Homework & project updates

2. Saving data

3. Slot machine challenge
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Homework
(Common problems)
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library(ggplot2)
mpg2 <- read.csv("mpg2.csv.bz2", stringsAsFactors = FALSE)

# Be sceptical
recent <- subset(mpg2, year >= 1998 & 
   fueltype %in% c("CNG", "Diesel", "Regular", "Premium"))
qplot(year, cty, data = recent, colour = fueltype, 
  geom = "smooth")
qplot(year, cty, data = recent, colour = fueltype, 
  geom = "jitter")

# Be curious
qplot(year, cty, data = recent, geom = "boxplot", group = year) + 
  facet_wrap(~ fueltype) + 
  geom_smooth(colour = "red")
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Project
• Due on Tuesday Sep 25
• Make sure to meet with Barret, Shaya or myself 

for project review
• This week’s homework is pretty light: practice 

code styling and loading and saving data. Work 
on the project! 

• Recommendation: reserve next week 
(Thursday-Tuesday) for final polishing, printing 
etc.
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Project review
• Meetings will last about 15 minutes
• We’ll give you feedback on your current 

direction, ask questions and offer suggestions. 
The more you have to bring the better.

• Barret tomorrow 12-2, Me 2-5 tomorrow (in the 
pavilion), Yeshaya 11-3 Monday

• Email all three of us and cc your team members.
• If one of those slots doesn't work, please 

provide three time slots that work for your team.
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Saving 
data
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Quiz

How do you load a csv file into R?
What’s the difference between a 
character vector (string) and a factor? 
When do you use strings? When do you 
use factors?
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# Make sure your working directory is set correctly!

slots <- read.delim("slots.txt", sep = " ", header = F, 
  stringsAsFactors = F)
names(slots) <- c("w1", "w2", "w3", "prize", "night")

levels <- c(0, 1, 2, 3, 5, 6, 7)
labels <- c("0", "B", "BB", "BBB", "DD", "C", "7")

slots$w1 <- factor(slots$w1, levels = levels, labels = labels)
slots$w2 <- factor(slots$w2, levels = levels, labels = labels)
slots$w3 <- factor(slots$w3, levels = levels, labels = labels)
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Your turn
Guess the name of the function you might 
use to write an R object back to a csv file 
on disk.  Use it to save slots to 
slots-2.csv.

What happens if you now read in 
slots-2.csv?  Is it different to your slots 
data frame? How?
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write.csv(slots, "slots-2.csv")
slots2 <- read.csv("slots-2.csv")

head(slots)
head(slots2)

str(slots)
str(slots2)

# Better, but still loses factor levels
write.csv(slots, file = "slots-3.csv", row.names = F)
slots3 <- read.csv("slots-3.csv")
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Saving data

# For long-term storage
write.csv(slots, file = "slots.csv", 
  row.names = FALSE)

# For short-term caching
# Preserves factors etc.
saveRDS(slots, "slots.rds")
slots2 <- readRDS("slots.rds")
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.csv .rds

read.csv() readRDS()

write.csv(
row.names = FALSE) saveRDS()

Only data frames Any R object

Plain text Binary
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Plain text Binary

Human readable Machine readable

Easy to 
understand Very fast to load

Big Small

Long term storage Short term 
caching
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Slot 
machine 
payoffs
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Slots
Casino claims that slot machines have 
prize payout of 92%.  Is this claim true?
mean(slots$prize)

t.test(slots$prize, mu = 0.92)

qplot(prize, data = slots, binwidth = 1)

How can we do better?
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Idea

We have enough information (distribution 
of windows and payoffs) to simulate the 
slot machine.
We could write code to simulate a single 
pull, then run it thousands of times and 
compare to 92%.
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Strategy
1. Break complex tasks into smaller parts
2. Use words to describe how each part 
should work
3. Translate words to R
4. When all parts work, combine into a 
function (next class)
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DD DD DD 800
7 7 7 80

 BBB BBB BBB 40
BB BB BB 25
B B B 10
C C C 10

Any bar Any bar Any bar 5
C C * 5
C * C 5
C * * 2
* C * 2
* * C 2

DD doubles any winning 
combination.  Two DD 
quadruples. DD is wild.

# Challenge: given e.g.

windows <- c("7", "C", "C")

# how can we calculate the

# payoff in R?
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Your turn

We can simplify this table into 3 basic 
cases of prizes.  What are they?  Take 3 
minutes to brainstorm with a partner.
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Cases

1. All windows have same value
2. A bar (B, BB, or BBB) in every window
3. Cherries and diamonds
4. (No prize)

Thursday, September 13, 12



Same values
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Same values

1. Check whether all windows are the 
same.  How?
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Same values

1. Check whether all windows are the 
same.  How?

2. If so, look up prize value. How?
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Same values

1. Check whether all windows are the 
same.  How?

2. If so, look up prize value. How?

With a partner, brainstorm 
for 2 minutes on how to 
solve one of these problems
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# Same value

same <- length(unique(windows)) == 1

# OR

same <- windows[1] == windows[2] && 
        windows[2] == windows[3]

if (same) {

  # Lookup value

}

Thursday, September 13, 12



&&, || vs. &, |

Use && and || to combine sub-conditions 
and return a single TRUE or FALSE. && and 
|| are “short-circuiting”: they do the 
minimum amount of work
Different to & and | - these return vectors 
when given vector.

Thursday, September 13, 12



if (condition) {

  expression

}

Condition should be a logical vector of 
length 1

If
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if (TRUE) {

  # This will be run

}

if (FALSE) {

  # This will be run

} else {

  # This will be

}

# Single line form: (not recommended)

if (TRUE) print("True!)

if (FALSE) print("True!)
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if (TRUE) {

  # This will be run

}

if (FALSE) {

  # This will be run

} else {

  # This will be

}

# Single line form: (not recommended)

if (TRUE) print("True!)

if (FALSE) print("True!)

Note indenting.  
Very important!
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x <- 5
if (x < 5) print("x < 5")
if (x == 5) print("x == 5")

x <- 1:5
if (x < 3) print("What should happen here?")

if (x[1] < x[2]) print("x1 < x2")
if (x[1] < x[2] && x[2] < x[3]) print("Asc")
if (x[1] < x[2] || x[2] < x[3]) print("Asc")
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if (window[1] == "DD") {
  prize <- 800
} else if (windows[1] == "7") {
  prize <- 80
} else if (windows[1] == "BBB") ...

# Or use subsetting
c("DD" = 800, "7" = 80, "BBB" = 40)
c("DD" = 800, "7" = 80, "BBB" = 40)["BBB"]
c("DD" = 800, "7" = 80, "BBB" = 40)["0"]
c("DD" = 800, "7" = 80, "BBB" = 40)[window[1]]
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Your turn

Complete the previous code so that if all 
the values in win are the same, then prize  
variable will be set to the correct amount.
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All bars

How can we determine if all of the 
windows are B, BB, or BBB?
(windows[1] == "B" || 
 windows[1] == "BB" || 
 windows[1] === "BBB") && ... ?
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All bars

How can we determine if all of the 
windows are B, BB, or BBB?
(windows[1] == "B" || 
 windows[1] == "BB" || 
 windows[1] === "BBB") && ... ?

Take 1 minute to brainstorm 
possible solutions
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windows[1] %in% c("B", "BB", "BBB")
windows %in% c("B", "BB", "BBB")

allbars <- windows %in% c("B", "BB", "BBB")
allbars[1] & allbars[2] & allbars[3]
all(allbars)

# See also ?any for the complement
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Your turn

Complete the previous code so that the 
correct value of prize is set if all the 
windows are the same, or they are all 
bars
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payoffs <- c("DD" = 800, "7" = 80, "BBB" = 40, 
  "BB" = 25, "B" = 10, "C" = 10, "0" = 0)

same <- length(unique(windows)) == 1
allbars <- all(windows %in% c("B", "BB", "BBB"))

if (same) {
  prize <- payoffs[windows[1]]
} else if (allbars) {
  prize <- 5
}
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Cherries

Need numbers of cherries, and numbers 
of diamonds (hint: use sum)

Then need to look up values (like for the 
first case) and multiply together
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cherries <- sum(windows == "C")

diamonds <- sum(windows == "DD")

c(0, 2, 5)[cherries + 1] * 

  c(1, 2, 4)[diamonds + 1]
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payoffs <- c("DD" = 800, "7" = 80, "BBB" = 40, 
  "BB" = 25, "B" = 10, "C" = 10, "0" = 0)

same <- length(unique(windows)) == 1
allbars <- all(windows %in% c("B", "BB", "BBB"))

if (same) {
  prize <- payoffs[windows[1]]
} else if (allbars) {
  prize <- 5
} else {
  cherries <- sum(windows == "C")
  diamonds <- sum(windows == "DD")

  prize <- c(0, 2, 5)[cherries + 1] * 
    c(1, 2, 4)[diamonds + 1]
}
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Writing a function

Now we need to wrap up this code in to a 
reusable fashion. We need a function

Have used functions a lot, next time we’ll 
learn how to write one.
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