
Hadley Wickham

Stat405
Functions & for loops

Tuesday, September 18, 12

1. Review

2. Complete* prize strategy

3. Function structure and calling
conventions

4. Practice writing functions

5. For loops

Tuesday, September 18, 12

What are three ways to determine if all the
elements in a vector are the same?
What’s the difference between && and &?

Quiz

Tuesday, September 18, 12

Strategy

Tuesday, September 18, 12

Can a function help our slot machine
study? CC by-nc-nd: http://www.flickr.com/photos/amoleji/2979221622/

Tuesday, September 18, 12

http://www.flickr.com/photos/amoleji/2979221622/
http://www.flickr.com/photos/amoleji/2979221622/

All bars

How can we determine if all of the
windows are B, BB, or BBB?
(windows[1] == "B" ||
 windows[1] == "BB" ||
 windows[1] === "BBB") && ... ?

Tuesday, September 18, 12

All bars

How can we determine if all of the
windows are B, BB, or BBB?
(windows[1] == "B" ||
 windows[1] == "BB" ||
 windows[1] === "BBB") && ... ?

Take 1 minute to brainstorm
possible solutions

Tuesday, September 18, 12

windows[1] %in% c("B", "BB", "BBB")
windows %in% c("B", "BB", "BBB")

allbars <- windows %in% c("B", "BB", "BBB")
allbars[1] & allbars[2] & allbars[3]
all(allbars)

See also ?any for the complement

Tuesday, September 18, 12

Your turn

Complete the previous code so that the
correct value of prize is set if all the
windows are the same, or they are all
bars

Tuesday, September 18, 12

payoffs <- c("DD" = 800, "7" = 80, "BBB" = 40,
 "BB" = 25, "B" = 10, "C" = 10, "0" = 0)

same <- length(unique(windows)) == 1
allbars <- all(windows %in% c("B", "BB", "BBB"))

if (same) {
 prize <- payoffs[windows[1]]
} else if (allbars) {
 prize <- 5
}

Tuesday, September 18, 12

Cherries

Need numbers of cherries, and numbers
of diamonds (hint: use sum)

Then need to look up values (like for the
first case) and multiply together

Tuesday, September 18, 12

cherries <- sum(windows == "C")

diamonds <- sum(windows == "DD")

c(0, 2, 5)[cherries + 1] *

 c(1, 2, 4)[diamonds + 1]

Tuesday, September 18, 12

payoffs <- c("DD" = 800, "7" = 80, "BBB" = 40,
 "BB" = 25, "B" = 10, "C" = 10, "0" = 0)

same <- length(unique(windows)) == 1
allbars <- all(windows %in% c("B", "BB", "BBB"))

if (same) {
 prize <- payoffs[windows[1]]
} else if (allbars) {
 prize <- 5
} else {
 cherries <- sum(windows == "C")
 diamonds <- sum(windows == "DD")

 prize <- c(0, 2, 5)[cherries + 1] *
 c(1, 2, 4)[diamonds + 1]
}

Tuesday, September 18, 12

Writing a function

Now we need to wrap up this code into a
reusable tool. We need a function.

We’ve used functions a lot, and now it’s
time to learn how to write one.

Tuesday, September 18, 12

Functions

Tuesday, September 18, 12

What we want

calculate_prize(c("DD", "DD", "DD"))
calculate_prize(c("B", "BBB", "BB"))
calculate_prize(c("B", "7", "C"))

Tuesday, September 18, 12

calculate_prize <- function(windows) {
 payoffs <- c("DD" = 800, "7" = 80, "BBB" = 40,
 "BB" = 25, "B" = 10, "C" = 10, "0" = 0)

 same <- length(unique(windows)) == 1
 allbars <- all(windows %in% c("B", "BB", "BBB"))

 if (same) {
 prize <- payoffs[windows[1]]
 } else if (allbars) {
 prize <- 5
 } else {
 cherries <- sum(windows == "C")
 diamonds <- sum(windows == "DD")

 prize <- c(0, 2, 5)[cherries + 1] *
 c(1, 2, 4)[diamonds + 1]
 }
 prize
}

Tuesday, September 18, 12

calculate_prize <- function(windows) {
 payoffs <- c("DD" = 800, "7" = 80, "BBB" = 40,
 "BB" = 25, "B" = 10, "C" = 10, "0" = 0)

 same <- length(unique(windows)) == 1
 allbars <- all(windows %in% c("B", "BB", "BBB"))

 if (same) {
 prize <- payoffs[windows[1]]
 } else if (allbars) {
 prize <- 5
 } else {
 cherries <- sum(windows == "C")
 diamonds <- sum(windows == "DD")

 prize <- c(0, 2, 5)[cherries + 1] *
 c(1, 2, 4)[diamonds + 1]
 }
 prize
}

name

always indent
inside {}!

arguments

last value in function is result
Tuesday, September 18, 12

Basic structure
• Name
• Input arguments
• Names/positions
• Defaults

• Body (the code)
• Output (final result)

Tuesday, September 18, 12

Default values

mean <- function(x) {
 sum(x) / length(x)
}
mean(1:10)

mean <- function(x, na.rm = FALSE) {
 if (na.rm) x <- x[!is.na(x)]
 sum(x) / length(x)
}
mean(c(NA, 1:9))
mean(c(NA, 1:9), na.rm = FALSE)
mean(c(NA, 1:9), na.rm = TRUE)

Tuesday, September 18, 12

Default values

mean <- function(x) {
 sum(x) / length(x)
}
mean(1:10)

mean <- function(x, na.rm = FALSE) {
 if (na.rm) x <- x[!is.na(x)]
 sum(x) / length(x)
}
mean(c(NA, 1:9))
mean(c(NA, 1:9), na.rm = FALSE)
mean(c(NA, 1:9), na.rm = TRUE)

default value

Tuesday, September 18, 12

Your turn
Write a function to calculate the sample
variance of a vector.
Start by calculating the variance of vector
of values called x. Make sure you can do
the computation before writing the
function.
Hint: you’ll need to use length, sum and
mean.

P
n
i=
1 (
x

i �
x̄) 2

n�
1

Tuesday, September 18, 12

Strategy
Always want to start simple: start with
test values and get the body of the
function working first.
Check each step as you go.
Don’t try and do too much at once!
“Wrap it up” as a function only once
everything works.

Tuesday, September 18, 12

x <- runif(100)
var(x)
n <- length(x)
xbar <- mean(x)

x - xbar
(x - xbar) ^ 2
sum(x - xbar) ^ 2
sum((x - xbar) ^ 2)
sum((x - xbar) ^ 2) / n - 1
sum((x - xbar) ^ 2) / (n - 1)

Tuesday, September 18, 12

my_var <- function(x) {
 n <- length(x)
 xbar <- mean(x)
 sum((x - xbar) ^ 2) / (n - 1)
}

Tuesday, September 18, 12

Testing

Always a good idea to test your code.
We have a prebuilt set of test cases: the
prize column in slots.csv

So for each row in slots.csv, we need to
calculate the prize and compare it to the
actual. (Hopefully they will be same!)

Tuesday, September 18, 12

For loops

Tuesday, September 18, 12

For loops

for(value in 1:10) {
 print(value)
}

print(1)
print(2)
print(3)
print(4)
print(5)
print(6)
print(7)
print(8)
print(9)
print(10)

Tuesday, September 18, 12

For loops

cuts <- levels(diamonds$cut)
for(cut in cuts) {
 selected <- diamonds$price[diamonds$cut == cut]
 print(cut)
 print(mean(selected))
}
Have to do something with output!

Tuesday, September 18, 12

Common pattern: create object for output,
then fill with results

cuts <- levels(diamonds$cut)
means <- rep(NA, length(cuts))

for(i in seq_along(cuts)) {
 sub <- diamonds[diamonds$cut == cuts[i],]
 means[i] <- mean(sub$price)
}

We will learn more sophisticated ways to do this
later on, but this is the most explicit

Tuesday, September 18, 12

Common pattern: create object for output,
then fill with results

cuts <- levels(diamonds$cut)
means <- rep(NA, length(cuts))

for(i in seq_along(cuts)) {
 sub <- diamonds[diamonds$cut == cuts[i],]
 means[i] <- mean(sub$price)
}

We will learn more sophisticated ways to do this
later on, but this is the most explicit

Why use i and not cut?

Tuesday, September 18, 12

1:5
seq_len(5)

1:10
seq_len(10)

1:0
seq_len(0)

seq_along(1:10)
1:10 * 2
seq_along(1:10 * 2)

Tuesday, September 18, 12

Your turn

For each diamond colour, calculate the
median price and carat size

Tuesday, September 18, 12

colours <- levels(diamonds$color)
n <- length(colours)
mprice <- rep(NA, n)
mcarat <- rep(NA, n)

for(i in seq_len(n)) {
 set <- diamonds[diamonds$color == colours[i],]
 mprice[i] <- median(set$price)
 mcarat[i] <- median(set$carat)
}

results <- data.frame(colours, mprice, mcarat)

Tuesday, September 18, 12

Back to slots...

For each row, calculate the prize and save
it, then compare calculated prize to actual
prize
Question: given a row, how can we
extract the slots in the right form for the
function?

Tuesday, September 18, 12

slots <- read.csv("slots.csv")

i <- 334

slots[i,]

slots[i, 1:3]

str(slots[i, 1:3])

as.character(slots[i, 1:3])

c(as.character(slots[i, 1]), as.character(slots[i, 2]),
as.character(slots[i, 3]))

slots <- read.csv("slots.csv", stringsAsFactors = F)

str(slots[i, 1:3])

as.character(slots[i, 1:3])

calculate_prize(as.character(slots[i, 1:3]))

Tuesday, September 18, 12

Create space to put the results
slots$check <- NA

For each row, calculate the prize
for(i in seq_len(nrow(slots))) {
 w <- as.character(slots[i, 1:3])
 slots$check[i] <- calculate_prize(w)
}

Check with known answers
subset(slots, prize != check)
Uh oh!

Tuesday, September 18, 12

Create space to put the results
slots$check <- NA

For each row, calculate the prize
for(i in seq_len(nrow(slots))) {
 w <- as.character(slots[i, 1:3])
 slots$check[i] <- calculate_prize(w)
}

Check with known answers
subset(slots, prize != check)
Uh oh!

What is the problem? Think
about the most general case

Tuesday, September 18, 12

DD DD DD 800
7 7 7 80

 BBB BBB BBB 40
BB BB BB 25
B B B 10
C C C 10

Any bar Any bar Any bar 5
C C * 5
C * C 5
C * * 2
* C * 2
* * C 2

DD doubles any winning
combination. Two DD
quadruples. DD is wild

windows <- c("DD", "C", "C")

How can we calculate the

payoff?

Tuesday, September 18, 12

