

Hadley Wickham

1. For loops
2. Hypothesis testing

3. Simulation


```
# Common pattern: create object for output,
# then fill with results
cuts <- levels(diamonds$cut)
means <- rep(NA, length(cuts))
for(i in seq_along(cuts)) {
    sub <- diamonds[diamonds$cut == cuts[i], ]
    means[i] <- mean(sub$price)
}
\# We will learn more sophisticated ways to do this
\# later on, but this is the most explicit
```

$1: 5$
seq_len(5)

1:10
seq_len(10)

1:0
seq_len(0)
seq_along(1:10)
1:10 * 2
seq_along(1:10 * 2)

Your turn

For each diamond colour, calculate the median price and carat size

```
colours <- levels(diamonds$color)
n <- length(colours)
mprice <- rep(NA, n)
mcarat <- rep(NA, n)
for(i in seq_len(n)) {
        set <- diamonds[diamonds$color == colours[i], ]
    mprice[i] <- median(set$price)
    mcarat[i] <- median(set$carat)
}
```

results <- data.frame(colours, mprice, mcarat)

Back to slots...

For each row, calculate the prize and save it, then compare calculated prize to actual prize

Question: given a row, how can we extract the slots in the right form for the function?
slots <- read.csv("slots.csv")
i <- 334
slots[i,]
slots[i, 1:3]
str(slots[i, 1:3])
slots <- read.csv("slots.csv", stringsAsFactors = F) str(slots[i, 1:3])
as.character(slots[i, 1:3])
calculate_prize(as.character(slots[i, 1:3]))
\# Create space to put the results slots\$check <- NA
\# For each row, calculate the prize
for(i in seq_len(nrow(slots))) \{ w <- as.character (slots[i, 1:3]) slots\$check[i] <- calculate_prize(w)
\}
\# Check with known answers
subset(slots, prize != check)
\# Uh oh!
\# Create space to put the results slots\$check <- NA
\# For each row, calculate the prize
for(i in seq_len(nrow(slots))) \{ w <- as.character(slots[i, 1:3]) slots\$check[i] <- calculate_prize(w)
\}
\# Check with known answers
subset(slots, prize != check)
\# Uh oh!

What is the problem? Think about the most general case

DD	DD	DD	800	
7	7	7	80	
BBB	BBB	BBB	40	
BB	BB	BB	25	
B	B	B	10	
C	C	C	10	
Any bar	Any bar	Any bar	5	
C	C	*	5	
C	*	C	5	
C	*	*	2	
*	C	*	2	DD doubles any winning combination. Two DD
*	*	C	2	quadruples. DD is wild

Goal

Casino claims that slot machines have prize payout of 92%, but payoff for the 345 we observed is 67%. Is the casino lying?
(House advantage of 8\% vs. 33\%)
(Big caveat: today we're using a prize calculation function we know to be incorrect)

Q: What does it mean to have prize payout of 92% ?

A: If we play the slot machine an infinite number of times, our average prize would be $\$ 0.92$

Strategy 1

Play the slot machine an infinite number of times. If the average prize is not $\$ 0.92$, reject the casino's claim.

But...

\# Let's make a virtual coin flip
\# 1 = heads, $0=$ tails
coin <- c (0, 1)
\# we can flip the coin once
flips <- sample(coin, 1, replace = T) mean(flips)
\# we can flip the coin many times flips <- sample(coin, 10, replace = T) mean(flips)
\# what happens to the proportion of heads as n \# increases?
flips <- sample(coin, 10000, replace = T)
n <- seq_along(flips)
mean <- cumsum(flips) / n
coin_toss <- data.frame(n, flips, mean)
library (ggplot2)
qplot(n, mean, data = coin_toss, geom = "line") + geom_hline(yintercept $=0.5$)
\# what happens to the proportion of heads as n \# increases?
flips <- sample(coin, 10000, replace = T)
n <- seq_along(flips)
mean <- cumsum(flips) / n
coin_tos cumulative sum (n, flips, mean)
library (ggplot2)
qplot(n, mean, data = coin_toss, geom = "line") + geom_hline(yintercept $=0.5$)

Strategy 2

Play the slot machine a large number of times. If the average prize is "far" from $\$ 0.92$, reject the casino's claim.


```
slots <- read.csv("slots.csv", stringsAsFactors = FALSE)
calculate_prize <- function(windows) {
    payoffs <- c("DD" = 800, "7" = 80, "BBB" = 40,
        "BB" = 25, "B" = 10, "C" = 10, "0" = 0)
    same <- length(unique(windows)) == 1
    allbars <- all(windows %in% c("B", "BB", "BBB"))
    if (same) {
        prize <- payoffs[windows[1]]
    } else if (allbars) {
        prize <- 5
    } else {
        cherries <- sum(windows == "C")
        diamonds <- sum(windows == "DD")
        prize <- c(0, 2, 5)[cherries + 1] *
            c(1, 2, 4)[diamonds + 1]
    }
    prize
}
```


Your turn

Write a function that simulates one pull on the slot machine (i.e, it should randomly choose a value from slots\$w1, a value from slots\$w2, and a value from slots\$w3 then calculate the prize)

Remember: solve the problem THEN write a function
\# Simulate the first window sample(slots\$w1, 1)
\# Simulate the second window sample(slots\$w2, 1)
\# Simulate the third window
sample(slots\$w3, 1)
\# What is the implicit assumption here?
\# How could we test that assumption?
play_once <- function() \{ w1 <- sample(slots\$w1, 1) w2 <- sample(slots\$w2, 1) w3 <- sample(slots\$w3, 1)
calculate_prize(c(w1, w2, w3)) \}

Your turn

But we need to play the slot machine many times. Create a new function that plays n times and return n prizes. Call it play_n
play_n <- function(n) \{ prizes <- rep(NA, n)
for(i in seq_len(n)) \{ prizes[i] <- play_once()
\} prizes
\}
\# Now we can see what happens to the mean prize as \# n increases
games <- data.frame(prizes = play_n(500)) games <- mutate(games,
n = seq_along(prizes),
avg = cumsum(prizes) / n)
qplot(n, avg, data = games, geom = "line") + geom_hline(yintercept = 0.92, color = "red")

Questions

Is 500 pulls enough?

What do other realisations look like?
How can we do this more quickly?
\# Current function is pretty slow system.time(play_n(5000))
\# I wrote a vectorised version - instead of
\# using explicit for loops, use R functions that \# work with vectors. This is usually much much \# faster
source("payoff-v.r")
system.time(play_many(5000))
\# What happens if we play more games?
games <- data.frame(prizes = play_many (10^6))
games <- mutate(games,

$$
\begin{aligned}
& \mathrm{n}=\text { seq_along(prizes) } \\
& \mathrm{avg}=\text { cumsum(prizes) / n) }
\end{aligned}
$$

every1000 <- subset (games, n \%\% $1000==0$) qplot(n, avg, data = every1000, geom = "line") qplot(n, avg, data $=$ subset(every1000, $\mathrm{n}>10000$), geom = "line")
\# Still seems to be quite a lot of variation even \# after 1,000,000 pulls

$\% \%$	remainder
$\% / \%$	integer division

```
seq_len(100) %% 5
seq_len(100) %/% 5
seq_len(100) %% 10
seq_len(100) %/% 10
seq_len(100) %% 11
seq_len(100) %/% 11
```

\# How can we characterise the amount of variation? \# We could do multiple runs and look at the \# distribution at multiple points
\# Turn our million pulls into 1,000 sessions of \# 1,000 pulls
many <- mutate(games,

$$
\begin{aligned}
& \text { group }=(n-1) \% / \% 1000+1, \\
& \text { group_n }=(n-1) \% \% 1000+1)
\end{aligned}
$$

\# How do we calculate the average? Just looking \# at the cumulative sum will no longer work
\# New function: ave
\# ave takes the first argument, divides it into \# pieces according to the second argument, applies \# FUN to each piece, and joins them back together
many\$avg <- ave(many\$prize, many\$group, FUN = cumsum) / many\$group_n
every10 <- subset(many, group_n \%\% 10 == 0) qplot(group_n, avg, data = every10, geom = "line",
group = group, alpha = I(1/5))

\# Could just look at the distribution at pull \# 1000
final <- subset(many, group_n == 1000) qplot(avg, data = final, binwidth = 0.01)
\# What do you think the average payoff is?
\# This basic technique is called bootstrapping.

