
Hadley Wickham

Stat405
Simulation

Thursday, September 20, 12

1. For loops

2. Hypothesis testing

3. Simulation

Thursday, September 20, 12

For loops

Thursday, September 20, 12

Common pattern: create object for output,
then fill with results

cuts <- levels(diamonds$cut)
means <- rep(NA, length(cuts))

for(i in seq_along(cuts)) {
 sub <- diamonds[diamonds$cut == cuts[i],]
 means[i] <- mean(sub$price)
}

We will learn more sophisticated ways to do this
later on, but this is the most explicit

Thursday, September 20, 12

1:5
seq_len(5)

1:10
seq_len(10)

1:0
seq_len(0)

seq_along(1:10)
1:10 * 2
seq_along(1:10 * 2)

Thursday, September 20, 12

Your turn

For each diamond colour, calculate the
median price and carat size

Thursday, September 20, 12

colours <- levels(diamonds$color)
n <- length(colours)
mprice <- rep(NA, n)
mcarat <- rep(NA, n)

for(i in seq_len(n)) {
 set <- diamonds[diamonds$color == colours[i],]
 mprice[i] <- median(set$price)
 mcarat[i] <- median(set$carat)
}

results <- data.frame(colours, mprice, mcarat)

Thursday, September 20, 12

Back to slots...

For each row, calculate the prize and save
it, then compare calculated prize to actual
prize
Question: given a row, how can we
extract the slots in the right form for the
function?

Thursday, September 20, 12

slots <- read.csv("slots.csv")

i <- 334
slots[i,]
slots[i, 1:3]
str(slots[i, 1:3])

slots <- read.csv("slots.csv", stringsAsFactors = F)
str(slots[i, 1:3])
as.character(slots[i, 1:3])

calculate_prize(as.character(slots[i, 1:3]))

Thursday, September 20, 12

Create space to put the results
slots$check <- NA

For each row, calculate the prize
for(i in seq_len(nrow(slots))) {
 w <- as.character(slots[i, 1:3])
 slots$check[i] <- calculate_prize(w)
}

Check with known answers
subset(slots, prize != check)
Uh oh!

Thursday, September 20, 12

Create space to put the results
slots$check <- NA

For each row, calculate the prize
for(i in seq_len(nrow(slots))) {
 w <- as.character(slots[i, 1:3])
 slots$check[i] <- calculate_prize(w)
}

Check with known answers
subset(slots, prize != check)
Uh oh!

What is the problem? Think
about the most general case

Thursday, September 20, 12

DD DD DD 800
7 7 7 80

 BBB BBB BBB 40
BB BB BB 25
B B B 10
C C C 10

Any bar Any bar Any bar 5
C C * 5
C * C 5
C * * 2
* C * 2
* * C 2

DD doubles any winning
combination. Two DD
quadruples. DD is wild

Thursday, September 20, 12

Hypothesis
testing

Thursday, September 20, 12

Goal
Casino claims that slot machines have prize
payout of 92%, but payoff for the 345 we
observed is 67%. Is the casino lying?
(House advantage of 8% vs. 33%)
(Big caveat: today we’re using a prize
calculation function we know to be
incorrect)

Thursday, September 20, 12

Q: What does it mean to have prize payout
of 92%?

A: If we play the slot machine an infinite
number of times, our average prize would
be $0.92

Thursday, September 20, 12

Strategy 1

Play the slot machine an infinite number
of times. If the average prize is not $0.92,
reject the casino’s claim.
But...

Thursday, September 20, 12

Let’s make a virtual coin flip
1 = heads, 0 = tails
coin <- c(0, 1)

we can flip the coin once
flips <- sample(coin, 1, replace = T)
mean(flips)

we can flip the coin many times
flips <- sample(coin, 10, replace = T)
mean(flips)

Thursday, September 20, 12

what happens to the proportion of heads as n
increases?

flips <- sample(coin, 10000, replace = T)
n <- seq_along(flips)
mean <- cumsum(flips) / n
coin_toss <- data.frame(n, flips, mean)

library(ggplot2)
qplot(n, mean, data = coin_toss, geom = "line") +
 geom_hline(yintercept = 0.5)

Thursday, September 20, 12

what happens to the proportion of heads as n
increases?

flips <- sample(coin, 10000, replace = T)
n <- seq_along(flips)
mean <- cumsum(flips) / n
coin_toss <- data.frame(n, flips, mean)

library(ggplot2)
qplot(n, mean, data = coin_toss, geom = "line") +
 geom_hline(yintercept = 0.5)

cumulative sum

Thursday, September 20, 12

n

m
ea
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

200 400 600 800 1000

Thursday, September 20, 12

n

m
ea
n

0.0

0.1

0.2

0.3

0.4

0.5

0.6

200 400 600 800 1000

How can we use this to test
whether μ = .92?

Thursday, September 20, 12

Strategy 2

Play the slot machine a large number of
times. If the average prize is “far” from
$0.92, reject the casino’s claim.

Thursday, September 20, 12

Simulation

Thursday, September 20, 12

slots <- read.csv("slots.csv", stringsAsFactors = FALSE)

calculate_prize <- function(windows) {
 payoffs <- c("DD" = 800, "7" = 80, "BBB" = 40,
 "BB" = 25, "B" = 10, "C" = 10, "0" = 0)

 same <- length(unique(windows)) == 1
 allbars <- all(windows %in% c("B", "BB", "BBB"))

 if (same) {
 prize <- payoffs[windows[1]]
 } else if (allbars) {
 prize <- 5
 } else {
 cherries <- sum(windows == "C")
 diamonds <- sum(windows == "DD")

 prize <- c(0, 2, 5)[cherries + 1] *
 c(1, 2, 4)[diamonds + 1]
 }
 prize
}

Thursday, September 20, 12

Your turn
Write a function that simulates one pull on
the slot machine (i.e, it should randomly
choose a value from slots$w1, a value
from slots$w2, and a value from slots$w3
then calculate the prize)
Remember: solve the problem THEN write
a function

Thursday, September 20, 12

Simulate the first window
sample(slots$w1, 1)

Simulate the second window
sample(slots$w2, 1)

Simulate the third window
sample(slots$w3, 1)

What is the implicit assumption here?
How could we test that assumption?

Thursday, September 20, 12

play_once <- function() {
 w1 <- sample(slots$w1, 1)
 w2 <- sample(slots$w2, 1)
 w3 <- sample(slots$w3, 1)

 calculate_prize(c(w1, w2, w3))
}

Thursday, September 20, 12

But we need to play the slot machine
many times. Create a new function that
plays n times and return n prizes. Call it
play_n

Your turn

Thursday, September 20, 12

play_n <- function(n) {
 prizes <- rep(NA, n)
 for(i in seq_len(n)) {
 prizes[i] <- play_once()
 }
 prizes
}

Thursday, September 20, 12

Now we can see what happens to the mean prize as
n increases

games <- data.frame(prizes = play_n(500))
games <- mutate(games,
 n = seq_along(prizes),
 avg = cumsum(prizes) / n)

qplot(n, avg, data = games, geom = "line") +
 geom_hline(yintercept = 0.92, color = "red")

Thursday, September 20, 12

n

m
ea
n

0.0

0.2

0.4

0.6

0.8

1.0

100 200 300 400 500

Thursday, September 20, 12

n

m
ea
n

0.0

0.2

0.4

0.6

0.8

1.0

100 200 300 400 500

Is this convincing
evidence that μ ≠ 0.92?
Why? Why not?

Thursday, September 20, 12

Is 500 pulls enough?
What do other realisations look like?
How can we do this more quickly?

Questions

Thursday, September 20, 12

Current function is pretty slow
system.time(play_n(5000))

I wrote a vectorised version - instead of
using explicit for loops, use R functions that
work with vectors. This is usually much much
faster
source("payoff-v.r")
system.time(play_many(5000))

Thursday, September 20, 12

What happens if we play more games?

games <- data.frame(prizes = play_many(10^6))
games <- mutate(games,
 n = seq_along(prizes),
 avg = cumsum(prizes) / n)

every1000 <- subset(games, n %% 1000 == 0)
qplot(n, avg, data = every1000, geom = "line")
qplot(n, avg, data = subset(every1000, n > 10000),
 geom = "line")

Still seems to be quite a lot of variation even
after 1,000,000 pulls

Thursday, September 20, 12

%% remainder

%/% integer division

seq_len(100) %% 5
seq_len(100) %/% 5

seq_len(100) %% 10
seq_len(100) %/% 10

seq_len(100) %% 11
seq_len(100) %/% 11

Thursday, September 20, 12

How can we characterise the amount of variation?
We could do multiple runs and look at the
distribution at multiple points

Turn our million pulls into 1,000 sessions of
1,000 pulls

many <- mutate(games,
 group = (n - 1) %/% 1000 + 1,
 group_n = (n - 1) %% 1000 + 1)

How do we calculate the average? Just looking
at the cumulative sum will no longer work

Thursday, September 20, 12

New function: ave
ave takes the first argument, divides it into
pieces according to the second argument, applies
FUN to each piece, and joins them back together

many$avg <- ave(many$prize, many$group,
 FUN = cumsum) / many$group_n

every10 <- subset(many, group_n %% 10 == 0)
qplot(group_n, avg, data = every10, geom = "line",
 group = group, alpha = I(1/5))

Thursday, September 20, 12

Thursday, September 20, 12

Could just look at the distribution at pull
1000

final <- subset(many, group_n == 1000)
qplot(avg, data = final, binwidth = 0.01)

What do you think the average payoff is?

This basic technique is called bootstrapping.

Thursday, September 20, 12

