
Hadley Wickham

Stat405
Advanced data manipulation

Tuesday, September 25, 12

1. Introduction to ggplot2

2. Data frames

3. Writing functions

4. Data manipulation

5. ggplot2 theory

6. Special data

7. Data cleaning

8. Advanced programming

9. Professional development

}
}
}

Unit 1:
Basic Skills

Unit 2:
Intermediate Skills

Unit 3:
Expert Skills

Tuesday, September 25, 12

1. Baby names data

2. Slicing and dicing

3. Merging data

Tuesday, September 25, 12

CC BY http://www.flickr.com/photos/the_light_show/2586781132

Baby names
Top 1000 male and female baby
names in the US, from 1880 to
2008.
258,000 records (1000 * 2 * 129)
But only five variables: year,
name, soundex, sex and prop.

Tuesday, September 25, 12

http://www.flickr.com/photos/the_light_show/2586781132
http://www.flickr.com/photos/the_light_show/2586781132

library(plyr)
library(ggplot2)

options(stringsAsFactors = FALSE)
bnames <- read.csv("bnames2.csv.bz2")

births <- read.csv("http://stat405.had.co.nz/data/births.csv")

Tuesday, September 25, 12

http://had.co.nz/stat405/data/baby-names2.csv.bz2
http://had.co.nz/stat405/data/baby-names2.csv.bz2

> head(bnames, 20)

 year name soundex prop sex

1 1880 John J500 0.081541 boy

2 1880 William W450 0.080511 boy

3 1880 James J520 0.050057 boy

4 1880 Charles C642 0.045167 boy

5 1880 George G620 0.043292 boy

6 1880 Frank F652 0.027380 boy

7 1880 Joseph J210 0.022229 boy

8 1880 Thomas T520 0.021401 boy

9 1880 Henry H560 0.020641 boy

10 1880 Robert R163 0.020404 boy

11 1880 Edward E363 0.019965 boy

12 1880 Harry H600 0.018175 boy

13 1880 Walter W436 0.014822 boy

14 1880 Arthur A636 0.013504 boy

15 1880 Fred F630 0.013251 boy

16 1880 Albert A416 0.012609 boy

17 1880 Samuel S540 0.008648 boy

18 1880 David D130 0.007339 boy

19 1880 Louis L200 0.006993 boy

20 1880 Joe J000 0.006174 boy

> tail(bnames, 20)

 year name soundex prop sex

257981 2008 Miya M000 0.000130 girl

257982 2008 Rory R600 0.000130 girl

257983 2008 Desirae D260 0.000130 girl

257984 2008 Kianna K500 0.000130 girl

257985 2008 Laurel L640 0.000130 girl

257986 2008 Neveah N100 0.000130 girl

257987 2008 Amaris A562 0.000129 girl

257988 2008 Hadassah H320 0.000129 girl

257989 2008 Dania D500 0.000129 girl

257990 2008 Hailie H400 0.000129 girl

257991 2008 Jamiya J500 0.000129 girl

257992 2008 Kathy K300 0.000129 girl

257993 2008 Laylah L400 0.000129 girl

257994 2008 Riya R000 0.000129 girl

257995 2008 Diya D000 0.000128 girl

257996 2008 Carleigh C642 0.000128 girl

257997 2008 Iyana I500 0.000128 girl

257998 2008 Kenley K540 0.000127 girl

257999 2008 Sloane S450 0.000127 girl

258000 2008 Elianna E450 0.000127 girl

Tuesday, September 25, 12

Your turn

Extract your name from the dataset. Plot
the trend over time.
What geom should you use? Do you
need any extra aesthetics?

Tuesday, September 25, 12

garret <- subset(bnames, name == "Garret")
hadley <- subset(bnames, name == "Hadley")

qplot(year, prop, data = garrett, geom = "line")

qplot(year, prop, data = hadley, color = sex,
 geom = "line")

Tuesday, September 25, 12

Use the soundex variable to extract all
names that sound like yours. Plot the
trend over time.
Do you have any difficulties? Think about
grouping.

Your turn

Tuesday, September 25, 12

glike <- subset(bnames, soundex == "G630")
qplot(year, prop, data = glike)
qplot(year, prop, data = glike, geom = "line")

qplot(year, prop, data = glike, geom = "line",
 colour = sex)

qplot(year, prop, data = glike, geom = "line",
 colour = sex) + facet_wrap(~ name)

qplot(year, prop, data = glike, geom = "line",
 colour = sex, group = interaction(sex, name))

Tuesday, September 25, 12

year

pr
op

0.0005

0.0010

0.0015

0.0020

0.0025

1880 1900 1920 1940 1960 1980 2000

sex
boy
girl

Sawtooth appearance
implies grouping is incorrect.

Tuesday, September 25, 12

Slicing
and dicing

Tuesday, September 25, 12

Revision

Recall the four functions that filter rows,
create summaries, add new variables and
rearrange the rows.
You have 30 seconds!

Tuesday, September 25, 12

Function Package

subset base

summarise plyr

mutate plyr

arrange plyr

They all have similar syntax. The first argument
is a data frame, and all other arguments are
interpreted in the context of that data frame.
Each returns a data frame.

Tuesday, September 25, 12

subset(df, color == "blue")

color value
blue 1
black 2
blue 3
blue 4
black 5

color value
blue 1
blue 3
blue 4

Tuesday, September 25, 12

summarise(df, double = 2 * value)

color value
blue 1
black 2
blue 3
blue 4
black 5

double
2
4
6
8
10

Tuesday, September 25, 12

summarise(df, total = sum(value))

color value
blue 1
black 2
blue 3
blue 4
black 5

total
15

Tuesday, September 25, 12

mutate(df, double = 2 * value)

color value
blue 1
black 2
blue 3
blue 4
black 5

color value double
blue 1 2
black 2 4
blue 3 6
blue 4 8
black 5 10

Tuesday, September 25, 12

arrange(df, color)

color value
4 1
1 2
5 3
3 4
2 5

color value
1 2
2 5
3 4
4 1
5 3

Tuesday, September 25, 12

arrange(df, desc(color))

color value
4 1
1 2
5 3
3 4
2 5

color value
5 3
4 1
3 4
2 5
1 2

Tuesday, September 25, 12

Your turn

In which year was your name most
popular? Least popular?
Reorder the data frame containing your
name from highest to lowest popularity.
Add a new column that gives the number
of babies per thousand with your name.

Tuesday, September 25, 12

summarise(garrett,
 least = year[prop == min(prop)],
 most = year[prop == max(prop)])

OR

summarise(garrett,
 least = year[which.min(prop)],
 most = year[which.max(prop)])

arrange(garrett, desc(prop))

mutate(garrett, per1000 = round(1000 * prop))

Tuesday, September 25, 12

Brainstorm

Thinking about the data, what are some
of the trends that you might want to
explore? What additional variables would
you need to create? What other data
sources might you want to use?
Pair up and brainstorm for 2 minutes.

Tuesday, September 25, 12

External Internal

Biblical names
Hurricanes
Ethnicity

Famous people

First/last letter
Length
Vowels
Rank

Sounds-like

join ddply

Tuesday, September 25, 12

Merging
data

Tuesday, September 25, 12

Name instrument
John guitar
Paul bass

George guitar
Ringo drums
Stuart bass
Pete drums

Name band
John T
Paul T

George T
Ringo T
Brian F

+ = ?

Combining datasets

Tuesday, September 25, 12

what_played<- data.frame(name = c("John", "Paul",
 "George", "Ringo", "Stuart", "Pete"), instrument =
 c("guitar", "bass", "guitar", "drums", "bass",
 "drums"))

members <- data.frame(name = c("John", "Paul",
 "George", "Ringo", "Brian"), band = c("TRUE",
 "TRUE", "TRUE", "TRUE", "FALSE"))

Tuesday, September 25, 12

Name instrument
John guitar
Paul bass

George guitar
Ringo drums
Stuart bass
Pete drums

Name band
John T
Paul T

George T
Ringo T
Brian F

Name instrument band
John guitar T
Paul bass T

George guitar T
Ringo drums T
Stuart bass NA
Pete drums NA

x y

+ =

join(x, y, type = "left")

Tuesday, September 25, 12

Name instrument
John guitar
Paul bass

George guitar
Ringo drums
Stuart bass
Pete drums

Name band
John T
Paul T

George T
Ringo T
Brian F

Name instrument band
John guitar T
Paul bass T

George guitar T
Ringo drums T
Stuart bass NA
Pete drums NA

x y

+ =

Try it

join(x, y, type = "left")

Tuesday, September 25, 12

Name instrument
John guitar
Paul bass

George guitar
Ringo drums
Stuart bass
Pete drums

Name band
John T
Paul T

George T
Ringo T
Brian F

Name instrument band
John guitar T
Paul bass T

George guitar T
Ringo drums T
Brian NA F

x y

+ =

join(x, y, type = "right")

Tuesday, September 25, 12

Name instrument
John guitar
Paul bass

George guitar
Ringo drums
Stuart bass
Pete drums

Name band
John T
Paul T

George T
Ringo T
Brian F

Name instrument band
John guitar T
Paul bass T

George guitar T
Ringo drums T
Brian NA F

x y

+ =

Try it

join(x, y, type = "right")

Tuesday, September 25, 12

Name instrument
John guitar
Paul bass

George guitar
Ringo drums
Stuart bass
Pete drums

Name band
John T
Paul T

George T
Ringo T
Brian F

Name instrument band
John guitar T
Paul bass T

George guitar T
Ringo drums T

x y

+ =

join(x, y, type = "inner")

Tuesday, September 25, 12

Name instrument
John guitar
Paul bass

George guitar
Ringo drums
Stuart bass
Pete drums

Name band
John T
Paul T

George T
Ringo T
Brian F

Name instrument band
John guitar T
Paul bass T

George guitar T
Ringo drums T

x y

+ =

Try it

join(x, y, type = "inner")

Tuesday, September 25, 12

Name instrument
John guitar
Paul bass

George guitar
Ringo drums
Stuart bass
Pete drums

Name band
John T
Paul T

George T
Ringo T
Brian F

Name instrument band
John guitar T
Paul bass T

George guitar T
Ringo drums T
Stuart bass NA
Pete drums NA
Brian NA F

x y

+ =

join(x, y, type = "full")

Tuesday, September 25, 12

Name instrument
John guitar
Paul bass

George guitar
Ringo drums
Stuart bass
Pete drums

Name band
John T
Paul T

George T
Ringo T
Brian F

Name instrument band
John guitar T
Paul bass T

George guitar T
Ringo drums T
Stuart bass NA
Pete drums NA
Brian NA F

x y

+ =

Try it

join(x, y, type = "full")

Tuesday, September 25, 12

Type Action

"left"
Include all of x, and
matching rows of y

"right"
Include all of y, and
matching rows of x

"inner"
Include only rows in

both x and y

"full" Include all rows

Tuesday, September 25, 12

Your turn

Convert from proportions to absolute
numbers by combining bnames with
births, and then performing the
appropriate calculation.

Tuesday, September 25, 12

bnames2 <- join(bnames, births,
 by = c("year", "sex"))
tail(bnames2)

bnames2 <- mutate(bnames2, n = prop * births)
tail(bnames2)

bnames2 <- mutate(bnames2, n = round(prop * births))
tail(bnames2)

Tuesday, September 25, 12

Births database does not contain all births!

qplot(year, births, data = births, geom = "line",
 color = sex)

Tuesday, September 25, 12

year

bi
rth
s

500000

1000000

1500000

2000000

1880 1900 1920 1940 1960 1980 2000

sex
boy
girl

19
36

: fi
rst

 iss
ue

d

19
86

: n
ee

ded
 fo

r c
hild

tax
 ded

uc
tio

n

Tuesday, September 25, 12

Name instrument
John guitar
Paul bass

George guitar
Ringo drums
Stuart bass
Pete drums

Name band instrument
John T vocals
Paul T vocals

George T backup
Ringo T backup
Brian F manager

+ = ?

How would we
combine these?

members$instrument <- c("vocals", "vocals", "backup",
 "backup", "manager")

Tuesday, September 25, 12

Name instrument
John guitar
Paul bass

George guitar
Ringo drums
Stuart bass
Pete drums

Name band instrument
John T vocals
Paul T vocals

George T backup
Ringo T backup
Brian F manager

+ = ?

How would we
combine these?

members$instrument <- c("vocals", "vocals", "backup",
 "backup", "manager")

Try it

Tuesday, September 25, 12

join(what_played, members, type = "full")
:(

?join
join(what_played, members, by = "name", type = "full")
:(
names(members)[3] <- "instrument2"
join(what_played, members, type = "full")

Tuesday, September 25, 12

Group wise
operations

Tuesday, September 25, 12

Number of people

How do we compute the number of
people with each name over all years ?
It’s pretty easy if you have a single name.
(e.g. how many people with your name
were born over the entire 128 years)
How would you do it?

Tuesday, September 25, 12

garrett <- subset(bnames2, name == "Garrett")
sum(garrett$n)

Or
summarise(garrett, n = sum(n))

But how could we do this for every name?

Tuesday, September 25, 12

Split
pieces <- split(bnames2, list(bnames$name))

Apply
results <- vector("list", length(pieces))
for(i in seq_along(pieces)) {
 piece <- pieces[[i]]
 results[[i]] <- summarise(piece,
 name = name[1], n = sum(n))
}

Combine
result <- do.call("rbind", results)

Tuesday, September 25, 12

Or equivalently

counts <- ddply(bnames2, "name", summarise,
 n = sum(n))

Tuesday, September 25, 12

Or equivalently

counts <- ddply(bnames2, "name", summarise,
 n = sum(n))

Input data

2nd argument to
summarise()

Way to split
up input

Function to apply to
each piece

Tuesday, September 25, 12

a 2
a 4
b 0
b 5
c 5
c 10

x y

Tuesday, September 25, 12

a 2
a 4
b 0
b 5
c 5
c 10

x y

x y

a 2
a 4

b 0
b 5

c 5
c 10

Split

x y

x y

Tuesday, September 25, 12

a 2
a 4
b 0
b 5
c 5
c 10

x y

x y

a 2
a 4

b 0
b 5

c 5
c 10

Split

x y

x y

3

2.5

7.5

Apply

Tuesday, September 25, 12

a 2
a 4
b 0
b 5
c 5
c 10

x y

x y

a 2
a 4

b 0
b 5

c 5
c 10

Split

x y

x y

3

2.5

7.5

Apply

a 3
b 2.5
c 7.5

Combine

x y

Tuesday, September 25, 12

Your turn

Repeat the same operation, but use
soundex instead of name. What is the
most common sound? What name does
it correspond to? (Hint: use join)

Tuesday, September 25, 12

scounts <- ddply(bnames2, "soundex", summarise,
 n = sum(n))
scounts <- arrange(scounts, desc(n))

Combine with names. When there are multiple
possible matches, picks first
scounts <- join(
 scounts, bnames2[, c("soundex", "name")],
 by = "soundex", match = "first")
head(scounts, 100)

subset(bnames, soundex == "L600")

Tuesday, September 25, 12

