
Hadley Wickham

Stat405
Groupwise operations

Tuesday, September 25, 12

1. Group wise operations

2. Challenges

Tuesday, September 25, 12

Projects

Tuesday, September 25, 12

Team debrief

• What worked well? What didn’t work
well?

• What will you change next time?
• Write one page (per team)

Tuesday, September 25, 12

Teams
• Unless all group members unanimously

agree, teams will be dissolved.
• Fill out http://bit.ly/mOAyFM by 5pm

Monday
• If you decide to go, you can say who

you absolutely don’t want to work with
again and we will respect your wishes.

Tuesday, September 25, 12

http://bit.ly/mOAyFM
http://bit.ly/mOAyFM

Group-wise
operations

Tuesday, September 25, 12

Getting started
library(plyr)
library(stringr)
options(stringsAsFactors = FALSE)

bnames <- read.csv("bnames2.csv.bz2")
births <- read.csv(
 "http://stat405.had.co.nz/data/births.csv")

bnames2 <- join(bnames, births, type = "left")
bnames2 <- mutate(bnames2,
 n = round(prop * births),
 first = str_sub(name, 1, 1),
 last = str_sub(name, -1, -1))

Tuesday, September 25, 12

http://had.co.nz/stat405/data/baby-names2.csv.bz2
http://had.co.nz/stat405/data/baby-names2.csv.bz2

Number of people

How do we compute the number of
people with each name over all years ?
It’s pretty easy if you have a single name.
(e.g. how many people with your name
were born over the entire 128 years)
How would you do it?

Tuesday, September 25, 12

Split
pieces <- split(bnames2, list(bnames$name))

Apply
results <- vector("list", length(pieces))
for(i in seq_along(pieces)) {
 piece <- pieces[[i]]
 results[[i]] <- summarise(piece,
 name = name[1], n = sum(n))
}

Combine
result <- do.call("rbind", results)

Tuesday, September 25, 12

Or equivalently

counts <- ddply(bnames2, "name", summarise,
 n = sum(n))

Input data

2nd argument to
summarise()

Way to split
up input

Function to apply to
each piece

Tuesday, September 25, 12

a 2
a 4
b 0
b 5
c 5
c 10

x y

Tuesday, September 25, 12

a 2
a 4
b 0
b 5
c 5
c 10

x y

x y

a 2
a 4

b 0
b 5

c 5
c 10

Split

x y

x y

Tuesday, September 25, 12

a 2
a 4
b 0
b 5
c 5
c 10

x y

x y

a 2
a 4

b 0
b 5

c 5
c 10

Split

x y

x y

3

2.5

7.5

Apply

Tuesday, September 25, 12

a 2
a 4
b 0
b 5
c 5
c 10

x y

x y

a 2
a 4

b 0
b 5

c 5
c 10

Split

x y

x y

3

2.5

7.5

Apply

a 3
b 2.5
c 7.5

Combine

x y

Tuesday, September 25, 12

Your turn

Repeat the same operation, but use
soundex instead of name. What is the
most common sound? What name does
it correspond to?

Tuesday, September 25, 12

scounts <- ddply(bnames2, "soundex", summarise,
 n = sum(n))
scounts <- arrange(scounts, desc(n))

Combine with names
When there are multiple possible matches,
join picks the first
scounts <- join(
 scounts, bnames2[, c("soundex", "name")],
 by = "soundex")
head(scounts, 100)

subset(bnames, soundex == "L600")

Tuesday, September 25, 12

scounts <- ddply(bnames2, "soundex", summarise,
 n = sum(n))

Specialised function for (weighted) counts
Faster, but only does one thing
scounts <- count(bnames2, "soundex", "n")

Tuesday, September 25, 12

Transformations

Tuesday, September 25, 12

What about group-wise
transformations? e.g. what if we want to
compute the rank of a name within a sex
and year? (John was the nth most
popular boys name in 2008...)
This task is easy if we have a single year
& sex, but hard otherwise.

Transformations

Tuesday, September 25, 12

What about group-wise
transformations? e.g. what if we want to
compute the rank of a name within a sex
and year? (John was the nth most
popular boys name in 2008...)
This task is easy if we have a single year
& sex, but hard otherwise.

Transformations

How would you do it for a single group?
Tuesday, September 25, 12

one <- subset(bnames, sex == "boy" & year == 2008)
one$rank <- rank(-one$prop,
 ties.method = "first")

or
one <- mutate(one,
 rank = rank(-prop, ties.method = "min"))
head(one)

What if we want to mutate
every sex and year?

Tuesday, September 25, 12

1. Extract a single group
2. Figure out how to solve it for just that

group
3. Use ddply to solve it for all groups

Workflow

Tuesday, September 25, 12

1. Extract a single group
2. Figure out how to solve it for just that

group
3. Use ddply to solve it for all groups

Workflow

How would you use ddply to calculate all ranks?
Tuesday, September 25, 12

bnames <- ddply(bnames, c("sex", "year"), mutate,
 rank = rank(-prop, ties.method = "min"))

Tuesday, September 25, 12

ddply + mutate =
group-wise transformation

ddply + summarise =
per-group summaries

ddply + subset =
per-group subsets

Tuesday, September 25, 12

Tools

You now have all the tools to solve 95%
of data manipulation problems in R. It’s
just a matter of figuring out which tools to
use, and how to combine them.
The following challenges will give you
some practice.

Tuesday, September 25, 12

Challenges

Tuesday, September 25, 12

Warmups

Which names were most popular in 1999?
Work out the average yearly usage of
each name.
List the 10 names with the highest
average proportions.

Tuesday, September 25, 12

Which names were most popular in 1999?
subset(bnames, year == 1999 & rank < 10)
n1999 <- subset(bnames, year == 1999)
head(arrange(n1999, desc(prop)), 10)

Average usage
overall <- ddply(bnames, "name", summarise,
 prop1 = mean(prop),
 prop2 = sum(prop) / 129)

Top 10 names
head(arrange(overall, desc(prop)), 10)

Tuesday, September 25, 12

How has the total proportion of babies
with names in the top 1000 changed over
time?
How has the popularity of different initials
changed over time?

Challenge 1

Tuesday, September 25, 12

sy <- ddply(bnames, c("year","sex"), summarise,
 prop = sum(prop),
 npop = sum(prop > 1/1000))

qplot(year, prop, data = sy, colour = sex,
 geom = "line")
qplot(year, npop, data = sy, colour = sex,
 geom = "line")

Tuesday, September 25, 12

init <- ddply(bnames, c("year","first"), summarise,
 prop = sum(prop)/2)

qplot(year, prop, data = init, colour = first,
 geom = "line")

Tuesday, September 25, 12

Challenge 2

For each name, find the year in which it
was most popular, and the rank in that
year. (Hint: you might find which.max
useful).
Print all names that have been the most
popular name at least once.

Tuesday, September 25, 12

most_pop <- ddply(bnames, "name", summarise,
 year = year[which.max(prop)],
 rank = min(rank))
most_pop <- ddply(bnames, "name", subset,
 prop == max(prop))

subset(most_pop, rank == 1)

Double challenge: Why is this last one wrong?

Tuesday, September 25, 12

Challenge 3

What name has been in the top 10 most
often?
(Hint: you'll have to do this in three steps.
Think about what they are before starting)

Tuesday, September 25, 12

top10 <- subset(bnames, rank <= 10)
counts <- count(top10, c("sex", "name"))

ddply(counts, "sex", subset, freq == max(freq))
head(arrange(counts, desc(freq)), 10)

Tuesday, September 25, 12

For each soundex, find the most common
name in that group

Challenge 4

Tuesday, September 25, 12

names <- count(bnames2, c("soundex", "name"), "n")

ddply(names, "soundex", subset, freq == max(freq))

Tuesday, September 25, 12

