
Hadley Wickham

Stat405
Regular expressions

Thursday, October 4, 12

1. Recap

2. Regular expressions

3. Other string processing functions

Project 2 now due

date Oct 30

Thursday, October 4, 12

Recap

Thursday, October 4, 12

library(stringr)
contents <- readRDS("email.rds")

breaks <- str_locate(contents, "\n\n")
headers <- str_sub(contents, end = breaks[, 1] - 1)
bodies <- str_sub(contents, start = breaks[, 2] + 1)

Thursday, October 4, 12

parse_headers <- function(x) {
 lines <- str_split(x, "\n")[[1]]

 continued <- str_sub(lines, 1, 1) %in% c(" ", "\t")

 # This is a useful trick!
 groups <- cumsum(!continued)

 fields <- rep(NA, max(groups))
 for (i in seq_along(fields)) {
 fields[i] <- str_c(lines[groups == i],
 collapse = "\n")
 }
 fields
}

Thursday, October 4, 12

Now we want to apply that function to every
element of headers

What should our output data structure look like?

It can't be a character vector. Why not?

Thursday, October 4, 12

n <- length(headers)

Instead, we need to use a list.
A list can contain any other data structure
(including other lists).
output <- vector("list", n)

for (i in seq_len(n)) {
 output[[i]] <- parse_headers(headers[i])
}

str(output)
output[1]
output[[1]]

Thursday, October 4, 12

If list x is a train carrying
objects, then x[[5]] is the
object in car 5; x[4:6] is a
train of cars 4-6.

http://twitter.com/#!/RLangTip/status/118339256388304896
Thursday, October 4, 12

http://twitter.com/#!/RLangTip/status/118339256388304896
http://twitter.com/#!/RLangTip/status/118339256388304896

str(strsplit(headers[1], "\n"))
str(strsplit(headers[1], "\n")[1])
str(strsplit(headers[1], "\n")[[1]])

str(strsplit(headers, "\n"))

Thursday, October 4, 12

Your turn
Write a small function that given a single header
field splits it into name and contents. Do you
want to use str_split(), or str_locate() &
str_sub()?

Remember to get the algorithm working before
you write the function
test1 <- "Sender: <Lighthouse@independent.org>"

test2 <- "Subject: Alice: Where is my coffee?"

Thursday, October 4, 12

mailto:Lighthouse@independent.org
mailto:Lighthouse@independent.org

f1 <- function(input) {
 str_split(input, ": ")[[1]]
}

f2 <- function(input) {
 colon <- str_locate(input, ": ")
 c(
 str_sub(input, end = colon[, 1] - 1),
 str_sub(input, start = colon[, 2] + 1)
)
}

f3 <- function(input) {
 str_split_fixed(input, ": ", 2)[1,]
}

Thursday, October 4, 12

We split the content into header and
body. And split up the header into fields.
Both of these tasks used fixed strings.
What if the pattern we need to match is
more complicated?

Next steps

Thursday, October 4, 12

Matching challenges
• How could we match a phone number?
• How could we match a date?
• How could we match a time?
• How could we match an amount of

money?
• How could we match an email address?

Thursday, October 4, 12

Regular
expressions

Thursday, October 4, 12

Pattern matching

Each of these types of data have a fairly
regular pattern that we can easily pick out
by eye
Today we are going to learn about regular
expressions, which are an extremely
concise language for describing patterns.

Thursday, October 4, 12

First challenge

• Matching phone numbers
• How are phone numbers normally

written?
• How can we describe this format?
• How can we extract the phone

numbers?

Thursday, October 4, 12

Nothing. It is a generic folder that has Enron
Global Markets on the cover. It is the one that I
sent you to match your insert to when you were
designing. With the dots. I am on my way over for
a meeting, I'll bring one.

Juli Salvagio
Manager, Marketing Communications
Public Relations
Enron-3641
1400 Smith Street
Houston, TX 77002
713-345-2908-Phone
713-542-0103-Mobile
713-646-5800-Fax

Thursday, October 4, 12

Mark,
Good speaking with you. I'll follow up when I get
your email.
Thanks,
Rosanna

Rosanna Migliaccio
Vice President
Robert Walters Associates
(212) 704-9900
Fax: (212) 704-4312
mailto:rosanna@robertwalters.com
http://www.robertwalters.com

Thursday, October 4, 12

mailto:rosanna@robertwalters.com
mailto:rosanna@robertwalters.com
http://www.robertwalters.com
http://www.robertwalters.com

Write down a description, in words, of the
usual format of phone numbers.

Your turn

Thursday, October 4, 12

Phone numbers
• 10 digits, normally grouped 3-3-4
• Separated by space, - or ()

• How can we express that with a computer
program? We’ll use regular expressions
• [0-9]: matches any number between 0

and 9
• [- ()]: matches -, space, (or)

Thursday, October 4, 12

phone <- "[(][0-9][0-9][0-9][-)][0-9][0-9][0-9][-]
[0-9][0-9][0-9][0-9]"

phone2 <- "[0-9]{3}[- .][0-9]{3}[- .][0-9]{4}"
phone3 <- "[(][0-9]{3}[)][- .][0-9]{3}[- ()][0-9]{4}"

test <- body[10]
cat(test)

str_detect(test, phone2)

str_locate(test, phone2)
str_locate_all(test, phone2)

str_extract(test, phone2)
str_extract_all(test, phone2)

Thursday, October 4, 12

Qualifier ≥ ≤

? 0 1

+ 1 Inf

* 0 Inf

{m,n} m n

{,n} 0 n

{m,} m Inf

Thursday, October 4, 12

What do these regular expression match?

mystery1 <- "[0-9]{5}(-[0-9]{4})?"
mystery2 <- "[0-9]{3}-[0-9]{2}-[0-9]{4}"
mystery3 <- "[A-Z0-9._%+-]+@[A-Z0-9.-]+\\.[A-Z]{2,4}"
mystery4 <- "https?://[a-z]+([a-z0-9-]*[a-z0-9]+)?(\\.([a-z]+
([a-z0-9-]*[a-z0-9]+)?)+)*"

Think about them first, then input to http://strfriend.com/
or http://xenon.stanford.edu/~xusch/regexp/analyzer.html
(select java for language - it's closest to R for regexps)

Thursday, October 4, 12

http://strfriend.com
http://strfriend.com
http://xenon.stanford.edu/~xusch/regexp/analyzer.html
http://xenon.stanford.edu/~xusch/regexp/analyzer.html

New features
• () group parts of a regular expression

• . matches any character
(\. specifically matches .)

• \d matches a digit, \s matches a space

• Other characters that need to be
escaped: $, ^

Thursday, October 4, 12

Thursday, October 4, 12

Escape
Tricky, because we are writing strings, but
the regular expression is the contents of
the string. For example:
"a\\.b" represents the string a\.b, which
only matches a.b

"a\.b" is an error

"a.b" matches a, then any letter then b

Thursday, October 4, 12

String Regexp Matches
"." . Any character

"\\." \. .

"\\d" \d Any digit

"\\s" \s Any white space

"\"" " "

"\\(" \((

"\\\\" \\ \

"\\b" \b Word border

Thursday, October 4, 12

String Regexp Matches

"." . Any character

"[.]" [.] .

"(" (Error - no matching)

"[(]" [(] (

Thursday, October 4, 12

Your turn

Improve our initial regular expression for
matching a phone number.
Hints: use the tools linked from the
website to help. You can use
str_extract_all(body, pattern) to
extract matches from the emails

Thursday, October 4, 12

phone3 <- "[(]?[0-9]{3}[-)]+[0-9]{3}[-]+[0-9]{4}"
str_extract_all(body, phone3)

Thursday, October 4, 12

Your turn
Create a regular expression to match a
date. Test it against the following cases:
c("10/14/1979", "20/20/1945",
"1/1/1905", "5/5/5")

Create a regular expression to match a
time. Test it against the following cases:
c("12:30 pm", "2:15 AM", "312:23 pm",
"1:00 american", "08:20 am")

Thursday, October 4, 12

dates <- c("10/14/1979", "20/20/1945", "1/1/1905", "5/5/5")
str_detect(dates, "[1]?[0-9]/[1-3]?[0-9]/[0-9]{2,4}")

times <- c("12:30 pm", "2:15 AM", "312:23 pm",
 "1:00 american", "08:20 am")
str_detect(times, "[01]?[0-9]:[0-5][0-9] ([Aa]|[Pp])[Mm]")
str_detect(times, "\\b1?[0-9]:[0-5][0-9] ([Aa]|[Pp])[Mm]\\b")

Thursday, October 4, 12

Your turn
Create a regular expression that matches
dates like "12 April 2008". Make sure your
expression works when the date is in a
sentence: "On 12 April 2008, I went to
town."
Then extract just the month (hint: use
str_split)

Thursday, October 4, 12

test <- c("15 April 2005", "28 February 1982",
 "113 July 1984")

dates <- str_extract(test, "\\b[0-9]{2} [a-zA-Z]+ [0-9]{4}")

date <- dates[[1]]
str_split(date, " ")[[1]][2]

Thursday, October 4, 12

String Regexp Matches
"[abc]" [abc] a, b, or c

"[a-c]" [a-c] a, b, or c

"[ac-"] [ac-] a, c, or -

"[ae-g.] [ae-g.] a, e, f, g, or .

"[^abc]" [^abc] Not a, b, or c

"[^a-c]" [^a-c] Not a, b, or c

"[ac^]" [ac^] a, c, or ^

Thursday, October 4, 12

String Regexp Matches
"^a" ^a a at start of string
"a$" a$ a at end of string
"^a$" ^a$ complete string = a
"\\$a" \$a $a

Thursday, October 4, 12

Your turn

Write a regular expression to match dollar
amounts.

Thursday, October 4, 12

money1 <- "\\$[0-9,]+[0-9]"
str_extract_all(body, money1)

money2 <- "\\$[0-9,]+[0-9](\\.[0-9]+)?"
str_extract_all(body, money2)

Thursday, October 4, 12

Summary

Thursday, October 4, 12

Function Parameters Result

str_detect string, pattern logical vector

str_locate string, pattern numeric matrix

str_extract string, pattern character vector

str_replace string, pattern,
replacement character vector

str_split_fixed string, pattern character matrix

Thursday, October 4, 12

Single
(output usually vector or matrix)

Multiple
(output usually a list)

str_detect

str_locate str_locate_all

str_extract str_extract_all

str_replace str_replace_all

str_split_fixed str_split

Thursday, October 4, 12

More info at:
http://vita.had.co.nz/papers/stringr.html

Thursday, October 4, 12

http://vita.had.co.nz/papers/stringr.html
http://vita.had.co.nz/papers/stringr.html

