Grammar of graphics

Hadley Wickham

1. Grammar of graphics
2. Communication graphics
3. Scales
4. Themes

"If any number of magnitudes are each the same multiple of the same number of other magnitudes, then the sum is that multiple of the sum." Euclid, ~300 BC

"If any number of magnitudes are each the same multiple of the same number of other magnitudes, then the sum is that multiple of the sum." Euclid, ~300 BC

$$
m\left(\sum x\right)=\Sigma(m x)
$$

The grammar of graphics

An abstraction which makes thinking about, reasoning about and communicating graphics easier.

Developed by Leland Wilkinson, particularly in "The Grammar of Graphics" 1999/2005

You've been using it in ggplot2 without knowing it! But to do more, you need to learn more about the theory.

David B Sparks, http://bit.ly/hn54NW

Claudia Beleites, http://bit.ly/yNqlpz

London Cycle Hire Journeys

James Cheshire, http://bit.ly/xqHhAs

What is a plot?

A set of layers
A set of scales
A coordinate system
A facetting specification

What is a layer?

- Data
- Aesthetic mappings (aes)
- A geometric object (geom)
- A statistical transformation (stat)
- A position adjustment (position)
layer(geom, stat, position, data, mapping, ...)

```
layer(
    data = mpg,
    mapping = aes(x = displ, y = hwy),
    geom = "point",
    stat = "identity",
    position = "identity"
)
```

layer (
data = diamonds,
mapping = aes(x = carat),
geom = "bar",
stat = "bin",
position = "stack"
)

```
\# A lot of typing!
```

```
layer(
    data \(=\mathrm{mpg}\),
    mapping \(=\) aes \((x=\) displ, \(y=h w y)\),
    geom = "point",
    stat = "identity",
    position = "identity"
)
```

\# Every geom has an associated default statistic \# (and vice versa), and position adjustment.
geom_point(aes(displ, hwy), data = mpg)
geom_histogram(aes(carat), data = diamonds)
\# To actually create the plot ggplot() + geom_point(aes(displ, hwy), data = mpg)
ggplot() + geom_histogram(aes(carat), data = diamonds)
\# Multiple layers
ggplot() +
geom_point(data = mpg, aes(displ, hwy)) + geom_smooth(data $=\mathrm{mpg}$, aes(displ, hwy))
\# Avoid redundancy:
ggplot(aes(displ, hwy), data = mpg) + geom_point() + geom_smooth()
\# Different layers can have different aesthetics ggplot(mpg, aes(displ, hwy)) + geom_smooth() + geom_point(aes(colour = class))
ggplot(mpg, aes(displ, hwy, colour = class)) + geom_point() + geom_smooth(method = "lm", se = F)
ggplot(mpg, aes(displ, hwy, group = class)) + geom_point(aes(colour = class)) + geom_smooth(method = "lm", se = F)
ggplot(mpg, aes(displ, hwy)) + geom_point(aes(colour = class)) + geom_line(aes(group = class), stat = "smooth", method = "lm", se = F)
\# ggplot doesn't stop you from doing dumb things
ggplot(mpg, aes(displ, hwy)) + geom_point() + geom_point(aes(cyl, displ))

	stat	geom
histogram	bin	bar
smooth	smooth	line
boxplot	boxplot	boxplot
density	density	line
freqpoly	bin	line

Your turn

For each of the following plots created with qplot, recreate the equivalent ggplot code. qplot(carat, price, data = diamonds) qplot(hwy, cty, data = mpg, geom = "jitter") qplot(reorder(class, hwy), hwy, data = mpg, geom = c("jitter", "boxplot"))
qplot(log10(carat), $\log 10(p r i c e)$, data = diamonds, colour = color) + geom_smooth(method = "lm")
ggplot(diamonds, aes(carat, price)) + geom_point()
ggplot(mpg, aes(hwy, cty)) + geom_jitter()
ggplot(mpg, aes(reorder(class, hwy), hwy)) + geom_jitter() +
geom_boxplot()
ggplot(diamonds, aes(log10(carat), $\log 10(p r i c e)$, colour = color)) +
geom_point() +
geom_smooth(method = "lm")

Help topics

Geoms

Geoms, short for geometric objects, describe the type of plot you will produce.

- geom_abline

Line specified by slope and intercept.

- geom_area

Area plot.

- geom_bar

Bars, rectangles with bases on x-axis

- geom_bin2d Add heatmap of 2d bin counts.
- geom_blank Blank, draws nothing.
- geom_boxplot Box and whiskers plot.
- geom_contour

Display contours of a 3d surface in 2d.

- geom_crossbar

Hollow bar with middle indicated by horizontal line.

- geom_density Display a smooth density estimate.
- geom_density2d Contours from a 2 d density estimate.
- geom_dotplot Dot plot

- geom_errorbar Error bars.
- geom_errorbarh Horizontal error bars
- geom_freqpoly Frequency polygon.

Dependencies

- Depends: stats, methods
- Imports: plyr, digest, grid, gtable, reshape2, scales, memoise, proto, MASS
- Suggests: quantreg. Hmisc, mapproj, maps, hexbin, maptools, multcomp, nlme, testthat
- Extends: sp

Learning ggplot2

ggplot2 mailing list
http://groups.google.com/group/ggplot2
stackoverflow
http://stackoverflow.com/tags/ggplot2
Cookbook for common graphics
http://wiki.stdout.org/rcookbook/Graphs/
ggplot2 book
http://www.springerlink.com/content/
978-0-387-98140-6/contents/

Exploratory graphics

Are for you (not others). Need to be able to create rapidly because your first attempt will never be the most revealing.

Iteration is crucial for developing the best display of your data.

Communication graphics

When you communicate your findings, you need to spend a lot of time polishing your graphics to eliminate distractions and focus on the story.

Iteration is crucial to ensure all the the small stuff works well: labels, color choices, tick marks...

Some problems

Bad colour scheme
Unnecessary axis labels
Legend needs improvement: better title and better key labels

No title
Incorrect aspect ratio

Population of Texas Counties

Scales

Scales

Control how data is mapped to perceptual properties, and produce guides (axes and legends) which allow us to read the plot.

Important parameters: name, breaks \& labels, limits.

Naming scheme: scale_aesthetic_name. All default scales have name continuous or discrete.
\# Default scales
scale_x_continuous()
scale_y_discrete()
scale_colour_discrete()
\# Custom scales
scale_colour_hue()
scale_x_log10()
scale_fill_brewer()
\# Scales with parameters
scale_x_continuous("X Label", limits = c(15, 30)) scale_colour_gradient(low = "blue", high = "red")

```
# First argument (name) controls axis label
scale_y_continuous("Latitude")
scale_x_continuous("")
```

\# Breaks and labels control tick marks
scale_x_continuous(breaks = -c(106,100,94))
scale_fill_discrete("Population", labels =
$c("<1000 "=" 0-999 "$, "< 1e4" = "1,000-9,999",
"< 1e5" = "10,000-99,999", "< 1e6" = "100,000 -
999,999", "< 1e7" = "1,000,000+"))
scale_y_continuous(breaks = NA)
\# Limits control range of data
scale_y_continuous(limits = c(26, 32))
\# same as:
p + ylim(26, 32)

What is a map?

What is a map?

What is a map?

Set of points specifying latitude and longitude

What is a map?

Set of points specifying latitude and longitude

What is a map?

Set of points specifying latitude and longitude

Polygon: connect dots in correct order

What is a map?

Polygon: connect only the correct dots

What is a map?

Polygon: connect only the correct dots

What is a map?

Polygon: connect only the correct dots

This is grouping (again)
\# To draw the graph options(stringsAsFactors = FALSE) pop <- read.csv("tx-pop.csv")
pop\$bin <- cut(log10(pop\$pop), breaks = 2:7, labels = c("< 1000", "<1e4", "< 1e5", "< 1e6", "< 1e7"))
borders <- read.csv("tx-borders.csv") choro <- join(borders, pop)
qplot(long, lat, data = choro, geom = "polygon", group = group, fill = bin) + coord_map()

Your turn

Fix the axis and legend related problems we identified. You'll need to add multiple scales on to the original plot.
qplot(long, lat, data = choro, geom = "polygon", group = group, fill = bin) + scale_fill_discrete("Population", labels =

$$
c("<1000 "=" 0-999 ", "<1 \mathrm{e} 4 "=" 1,000-9,999 ", \quad "<1 \mathrm{e} 5 "=
$$

"10,000-99,999", "< 1e6" = "100,000-999,999", "< 1e7" =
"1,000,000+")) +
scale_x_continuous("") +
scale_y_continuous("") +
coord_map()

Colour

Colour blindness

$7-10 \%$ of men are red-green colour "blind". (Many other rarer types of colour blindness)

Solutions: avoid red-green contrasts; use redundant mappings; test. I like color oracle: http://colororacle.cartography.ch

Alternatives

Discrete: brewer, grey, manual
Continuous: gradient2, gradientn

Your turn

Modify the fill scale to use a Brewer colour palette of your choice. (Hint: you will need to change the name of the scale)

Use RColorBrewer: :display.brewer.all to list all palettes.

```
ggplot(choro, aes(long, lat)) +
    geom_polygon(aes(group = group, fill = bin)) +
    scale_fill_brewer("Population", labels = c("< 1000" = "0 - 999" , "< 1e4" =
    "1,000 - 9,999", "< 1e5" = "10,000 - 99,999", "< 1e6" = "100,000 -
    999,999", "< 1e7" = "1,000,000+"), palette = "Blues") +
    scale_x_continuous("") +
    scale_y_continuous("") +
    coord_map()
```


Hhenes

\# Lots to learn, but the most important things \# are:
qplot(mpg, wt, data = mtcars) + theme_bw()
qplot(mpg, wt, data = mtcars) + theme(title = "My awesome title")

```
ggplot(choro, aes(long, lat)) +
    geom_polygon(aes(group = group, fill = bin)) +
    scale_fill_brewer("Population", labels = c("< 1000" = "0 - 999" , "< 1e4" =
        "1,000 - 9,999", "< 1e5" = "10,000 - 99,999", "< 1e6" = "100,000 -
        999,999", "< 1e7" = "1,000,000+"), palette = "Blues") +
    scale_x_continuous("") +
    scale_y_continuous("") +
    coord_map() +
    theme_bw() +
    theme(title = "Population of Texas Counties")
```

