
Hadley Wickham
Rice University / RStudio

Data manipulation
with plyr

November 2012

http://stat405.had.co.nz/utah

Monday, November 12, 12

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://stat405.had.co.nz/utah
http://stat405.had.co.nz/utah

• Visualizing data
with R

• Working in R

• Transforming data

• Reshaping data

Day 1

Transform

Visualise

Model

Day 2
• Fitting and interpreting

• Understanding model
uncertainty

• Comparing models

• Modelling/Machine
learning survey

Monday, November 12, 12

1. Baby names data

2. Four tools for data manipulation

3. Groupwise operations

4. ddply

5. Challenges

Monday, November 12, 12

CC BY http://www.flickr.com/photos/the_light_show/2586781132

Top 1000 male and female baby
names in the US, from 1880 to
2008.
258,000 records (1000 * 2 * 129)
But only five variables: year, name,
soundex, sex and prop.

Baby names

Monday, November 12, 12

http://www.flickr.com/photos/the_light_show/2586781132
http://www.flickr.com/photos/the_light_show/2586781132

install.packages(c("plyr", "ggplot2"))

library(plyr)
library(ggplot2)

options(stringsAsFactors = FALSE)

bnames <- read.csv("bnames2.csv.bz2")
bnames <- read.csv(choose.file())

Monday, November 12, 12

head(bnames)
 year name prop sex soundex
1 1880 John 0.081541 boy J500
2 1880 William 0.080511 boy W450
3 1880 James 0.050057 boy J520
4 1880 Charles 0.045167 boy C642
5 1880 George 0.043292 boy G620
6 1880 Frank 0.027380 boy F652

tail(bnames)
 year name prop sex soundex
257995 2008 Diya 0.000128 girl D000
257996 2008 Carleigh 0.000128 girl C642
257997 2008 Iyana 0.000128 girl I500
257998 2008 Kenley 0.000127 girl K540
257999 2008 Sloane 0.000127 girl S450
258000 2008 Elianna 0.000127 girl E450

Monday, November 12, 12

Extract your name from the dataset. Plot
the trend over time.

Your turn

Monday, November 12, 12

garrett <- bnames[bnames$name == "Garrett",]

qplot(year, prop, data = garrett, geom = "line")

Monday, November 12, 12

subset
summarise
mutate
arrange

Monday, November 12, 12

Revision

Recall the four functions that filter rows,
create summaries, add new variables and
rearrange the rows.
You have 30 seconds!

Monday, November 12, 12

Function Package

subset base

summarise plyr

mutate plyr

arrange plyr

They all have similar syntax. The first argument
is a data frame, and all other arguments are
interpreted in the context of that data frame.
Each returns a data frame.

Monday, November 12, 12

subset(df, color == "blue")

color value
blue 1
black 2
blue 3
blue 4
black 5

color value
blue 1
blue 3
blue 4

Monday, November 12, 12

summarise(df, double = 2 * value)

color value
blue 1
black 2
blue 3
blue 4
black 5

double
2
4
6
8
10

Monday, November 12, 12

summarise(df, total = sum(value))

color value
blue 1
black 2
blue 3
blue 4
black 5

total
15

Monday, November 12, 12

mutate(df, double = 2 * value)

color value
blue 1
black 2
blue 3
blue 4
black 5

color value double
blue 1 2
black 2 4
blue 3 6
blue 4 8
black 5 10

Monday, November 12, 12

arrange(df, color)

color value
4 1
1 2
5 3
3 4
2 5

color value
1 2
2 5
3 4
4 1
5 3

Monday, November 12, 12

arrange(df, desc(color))

color value
4 1
1 2
5 3
3 4
2 5

color value
5 3
4 1
3 4
2 5
1 2

Monday, November 12, 12

Using the data frame containing your name:
Reorder from highest to lowest popularity.
Calculate the min, mean, and max
proportions for your name over the years.
Return these in a data frame.

Add a new column that changes the
proportion to a percentage

Your turn

Monday, November 12, 12

arrange(garrett, desc(prop))

summarise(garrett,
 min = min(prop),
 mean = mean(prop),
 max = max(prop))

mutate(garrett, perc = prop * 100)

Monday, November 12, 12

Group wise
operations

Monday, November 12, 12

Total number of people per name

 name total
1 Aaden 959
2 Aaliyah 39665
3 Aarav 219
4 Aaron 509464
5 Ab 25
6 Abagail 2682
7 Abb 16
8 Abbey 14348
9 Abbie 16622
10 Abbigail 6800

Monday, November 12, 12

Total number of people per name

Do we have
enough

information to
calculate this?

 name total
1 Aaden 959
2 Aaliyah 39665
3 Aarav 219
4 Aaron 509464
5 Ab 25
6 Abagail 2682
7 Abb 16
8 Abbey 14348
9 Abbie 16622
10 Abbigail 6800

Monday, November 12, 12

Your turn
In groups, calculate the totals
for each name. If it is difficult,
just devise a strategy for
doing it.
Hint: Start by calculating the
total for a single name (e.g,
your name).

 name total
1 Aaden 959
2 Aaliyah 39665
3 Aarav 219
4 Aaron 509464
5 Ab 25
6 Abagail 2682
7 Abb 16
8 Abbey 14348
9 Abbie 16622
10 Abbigail 6800

Monday, November 12, 12

garrett <- subset(bnames, name == "garrett")
sum(garrett$n)

Or
summarise(garrett, total = sum(n))

But how could we do this for every name?

Monday, November 12, 12

Split
john <- subset(bnames2, name == "John")
william <- subset(bnames2, name == "William")
james <- subset(bnames2, name == "James")
...

Apply
john_total <- summarise(john, total = sum(n))
william_total <- summarise(william, total = sum(n))
james_total <- summarise(james, total = sum(n))
...

Combine
totals <- rbind(john_total, william_total, james_total...)

Monday, November 12, 12

Split
john <- subset(bnames2, name == "John")
william <- subset(bnames2, name == "William")
james <- subset(bnames2, name == "James")
...

Apply
john_total <- summarise(john, total = sum(n))
william_total <- summarise(william, total = sum(n))
james_total <- summarise(james, total = sum(n))
...

Combine
totals <- rbind(john_total, william_total, james_total...)

Th
e a

pproa
ch

 is
so

un
d, b

ut
the

re

are
 67

82
 na

mes
 :(

Monday, November 12, 12

Your turn

Look at the previous code and answer these
three questions:
What data set did we split into pieces?
What variable did we use to split up the data
set?
What function did we apply to each piece?

Monday, November 12, 12

Split
john <- subset(bnames2, name == "John")
william <- subset(bnames2, name == "William")
james <- subset(bnames2, name == "James")
...

Apply
john_total <- summarise(john, total = sum(n))
william_total <- summarise(william, total = sum(n))
james_total <- summarise(james, total = sum(n))
...

combine
totals <- rbind(john_total, william_total,
james_total, ...)

Monday, November 12, 12

Split
john <- subset(bnames2, name == "John")
william <- subset(bnames2, name == "William")
james <- subset(bnames2, name == "James")
...

Apply
john_total <- summarise(john, total = sum(n))
william_total <- summarise(william, total = sum(n))
james_total <- summarise(james, total = sum(n))
...

combine
totals <- rbind(john_total, william_total,
james_total, ...)

Split this data set

Monday, November 12, 12

Split
john <- subset(bnames2, name == "John")
william <- subset(bnames2, name == "William")
james <- subset(bnames2, name == "James")
...

Apply
john_total <- summarise(john, total = sum(n))
william_total <- summarise(william, total = sum(n))
james_total <- summarise(james, total = sum(n))
...

combine
totals <- rbind(john_total, william_total,
james_total, ...)

Monday, November 12, 12

Split
john <- subset(bnames2, name == "John")
william <- subset(bnames2, name == "William")
james <- subset(bnames2, name == "James")
...

Apply
john_total <- summarise(john, total = sum(n))
william_total <- summarise(william, total = sum(n))
james_total <- summarise(james, total = sum(n))
...

combine
totals <- rbind(john_total, william_total,
james_total, ...)

with this variable

Monday, November 12, 12

Split
john <- subset(bnames2, name == "John")
william <- subset(bnames2, name == "William")
james <- subset(bnames2, name == "James")
...

Apply
john_years <- summarise(john, total = sum(n))
william_years <- summarise(william, total = sum(n))
james_years <- summarise(james, total = sum(n))
...

combine
totals <- rbind(john_total, william_total,
james_total, ...)

Monday, November 12, 12

Split
john <- subset(bnames2, name == "John")
william <- subset(bnames2, name == "William")
james <- subset(bnames2, name == "James")
...

Apply
john_years <- summarise(john, total = sum(n))
william_years <- summarise(william, total = sum(n))
james_years <- summarise(james, total = sum(n))
...

combine
totals <- rbind(john_total, william_total,
james_total, ...)

then apply this
function

Monday, November 12, 12

Split
john <- subset(bnames2, name == "John")
william <- subset(bnames2, name == "William")
james <- subset(bnames2, name == "James")
...

Apply
john_years <- nrow(john)
william_years <- nrow(william)
james_years <- nrow(james)
...

combine
totals <- rbind(john_total, william_total,
james_total, ...)

Monday, November 12, 12

Split
john <- subset(bnames2, name == "John")
william <- subset(bnames2, name == "William")
james <- subset(bnames2, name == "James")
...

Apply
john_years <- nrow(john)
william_years <- nrow(william)
james_years <- nrow(james)
...

combine
totals <- rbind(john_total, william_total,
james_total, ...)

put results
into a single data

frame

Monday, November 12, 12

ddply

Monday, November 12, 12

ddply(

split-combine-apply with ddply

)

Monday, November 12, 12

ddply(

split-combine-apply with ddply

)

data set
to split

variable(s)
to split by

function to apply
to each group

Monday, November 12, 12

ddply(bnames2

split-combine-apply with ddply

)

data set
to split

variable(s)
to split by

function to apply
to each group

Monday, November 12, 12

ddply(bnames2

split-combine-apply with ddply

, "name")

data set
to split

variable(s)
to split by

function to apply
to each group

Monday, November 12, 12

ddply(bnames2

split-combine-apply with ddply

, "name", summarise)

data set
to split

variable(s)
to split by

function to apply
to each group

Monday, November 12, 12

ddply(bnames2

split-combine-apply with ddply

, "name", summarise)

data set
to split

variable(s)
to split by

function to apply
to each group

Q: How many arguments did summarise get
in our previous code? Will it know what they
are above?

Monday, November 12, 12

Split
john <- subset(bnames2, name == "John")
william <- subset(bnames2, name == "William")
james <- subset(bnames2, name == "James")
...

Apply
john_years <- summarise(john, total = sum(n))
william_years <- summarise(william, total = sum(n))
james_years <- summarise(james, total = sum(n))
...

combine
totals <- rbind(john_total, william_total,
james_total, ...)

Monday, November 12, 12

Split
john <- subset(bnames2, name == "John")
william <- subset(bnames2, name == "William")
james <- subset(bnames2, name == "James")
...

Apply
john_years <- summarise(john, total = sum(n))
william_years <- summarise(william, total = sum(n))
james_years <- summarise(james, total = sum(n))
...

combine
totals <- rbind(john_total, william_total,
james_total, ...)

first argument
is the piece from

above

Monday, November 12, 12

Split
john <- subset(bnames2, name == "John")
william <- subset(bnames2, name == "William")
james <- subset(bnames2, name == "James")
...

Apply
john_years <- summarise(john, total = sum(n))
william_years <- summarise(william, total = sum(n))
james_years <- summarise(james, total = sum(n))
...

combine
totals <- rbind(john_total, william_total,
james_total, ...)

Monday, November 12, 12

Split
john <- subset(bnames2, name == "John")
william <- subset(bnames2, name == "William")
james <- subset(bnames2, name == "James")
...

Apply
john_years <- summarise(john, total = sum(n))
william_years <- summarise(william, total = sum(n))
james_years <- summarise(james, total = sum(n))
...

combine
totals <- rbind(john_total, william_total,
james_total, ...)

first argument
is the piece from

above

the second argument
is what we want
summarise to do

Monday, November 12, 12

ddply(bnames2, "name", summarise, ...)

split-combine-apply with ddply

Monday, November 12, 12

ddply(bnames2, "name", summarise, ...)

split-combine-apply with ddply

data set
to split

variable(s)
to split by

function to use
on each group

Monday, November 12, 12

ddply(bnames2, "name", summarise, ...)

split-combine-apply with ddply

data set
to split

variable(s)
to split by

function to use
on each group

extra arguments
for function

Monday, November 12, 12

Your turn

In your group, use ddply to
finish calculating the totals for
each name.
Hint: be sure to save your
output to something.

 name total
1 Aaden 959
2 Aaliyah 39665
3 Aarav 219
4 Aaron 509464
5 Ab 25
6 Abagail 2682
7 Abb 16
8 Abbey 14348
9 Abbie 16622
10 Abbigail 6800

Monday, November 12, 12

totals <- ddply(bnames2, "name", summarise,
 total = sum(n))

Monday, November 12, 12

Al 2
Bo 4
Bo 0
Bo 5
Ed 5
Ed 10

name n

name n

Al 2

Bo 4
Bo 0
Bo 5

Ed 5
Ed 10

Split

name n

name n

Al 2
Bo 9
Ed 15

Combine

name total

2

9

15

Apply
total

total

total

ddply(bnames2, "name", summarise, total = sum(n))
Monday, November 12, 12

Number per soundex

• How can we compute the total number
of people who ever had each soundex?

Monday, November 12, 12

Number per soundex

• How can we compute the total number
of people who ever had each soundex?

Predict (in your head) the code that will
do this.

Monday, November 12, 12

Repeat the same operation, but use
soundex instead of name. This tells us
the total number of people whose names
ever sounded like each soundex.
What is the most common sound? What
name does it correspond to?

Your turn

Monday, November 12, 12

stotals <- ddply(bnames2, "soundex", summarise,
 total = sum(n))
stotals <- arrange(stotals, desc(n))

subset(bnames, soundex == "W450")

Monday, November 12, 12

Workflow

1. Extract a single group
2. Find a function that solves it for just

that group

3. Combine the function with ddply to
solve it for all groups

Monday, November 12, 12

Transformations

• How can we make a new variable that
shows the rank of each name for each
year? We should treat boys names as
distinct from girls names (even if they’re
spelled the same).

Monday, November 12, 12

Transformations

Hint: We’ll use rank()

• How can we make a new variable that
shows the rank of each name for each
year? We should treat boys names as
distinct from girls names (even if they’re
spelled the same).

Monday, November 12, 12

Extract a single year’s worth of names.
Make sure they are all the same sex. Try
year = 2008 and sex = boy.

Your turn: Step 1

Monday, November 12, 12

Add a rank variable to our subset. Use
rank().

Your turn: Step 2

Monday, November 12, 12

Combine
mutate(boys2008, rank = rank(desc(prop)))

with ddply and apply to the entire data
set.

Your turn: Step 3

Monday, November 12, 12

boys2008 <- subset(bnames2,
 year == 2008 & sex == "boy")

mutate(boys2008, rank == rank(desc(prop)))

ranks <- ddply(bnames2, c("year", "sex"),
 mutate, rank = rank(desc(prop)))

Monday, November 12, 12

Challenges

Monday, November 12, 12

Solving new problems

• Simple problems: identify which one of
subset, summarise, mutate or arrange
that you need. Combine with ddply.

• Complex problems: figure out a
sequence of simple problems that
leads you from the raw data to the final
problem.

Monday, November 12, 12

Warmups

Which names were most popular in 1999?
Work out the average yearly usage of
each name.
List the 10 names with the highest
average proportions.

Monday, November 12, 12

Which names were most popular in 1999?
subset(bnames2, year == 1999 & rank < 10)
n1999 <- subset(bnames2, year == 1999)
head(arrange(n1999, desc(prop)), 10)

Average usage
overall <- ddply(bnames2, "name", summarise,
 prop1 = mean(prop),
 prop2 = sum(prop) / 129)

Top 10 names
head(arrange(overall, desc(prop)), 10)

Monday, November 12, 12

library(stringr)

extracts first and last letter of each name
bnames2 <- mutate(bnames2,
 first = str_sub(name, 1, 1),
 last = str_sub(name, -1, -1))

Set up for challenges

Monday, November 12, 12

How has the total proportion of babies
with names in the top 1000 changed over
time?
How has the popularity of different initials
changed over time?

Challenge 1

Monday, November 12, 12

top1000 <- ddply(bnames2, c("year","sex"), summarise,
 prop = sum(prop),
 npop = sum(prop > 1/1000))

qplot(year, prop, data = top1000, colour = sex,
 geom = "line")
qplot(year, npop, data = top1000, colour = sex,
 geom = "line")

Monday, November 12, 12

init <- ddply(bnames2, c("year","first"), summarise,
 prop = sum(prop)/2)

qplot(year, prop, data = init, colour = first,
 geom = "line")

Monday, November 12, 12

Challenge 2

For each name, find the year in which it
was most popular, and the rank in that
year. (Hint: you might find which.max
useful).
Print all names that have been the most
popular name at least once.

Monday, November 12, 12

most_pop <- ddply(bnames2, "name", summarise,
 year = year[which.max(prop)],
 rank = min(rank))
most_pop <- ddply(bnames2, "name", subset,
 prop == max(prop))

subset(bnames2, rank == 1)

Monday, November 12, 12

Challenge 3

What two names (boy and girl) have been
in the top 10 most often?
(Hint: you'll have to do this in three steps.
Think about what they are before starting)

Monday, November 12, 12

top10 <- subset(bnames2, rank <= 10)
counts <- ddply(top10, c("sex", "name"), nrow) # or
counts <- count(top10, c("sex", "name"))

ddply(counts, "sex", subset, freq == max(freq)) # or
head(arrange(counts, desc(freq)), 10

Monday, November 12, 12

For each soundex, find the most common
name in that group.
Hint: use count (see ?count)

Challenge 4

Monday, November 12, 12

names <- count(bnames2, c("soundex", "name"), "n")

ddply(names, "soundex", subset, freq == max(freq))

Monday, November 12, 12

More
about plyr

Monday, November 12, 12

array data frame list nothing

array

data frame

list

n replicates

function
arguments

aaply adply alply a_ply

daply ddply dlply d_ply

laply ldply llply l_ply

raply rdply rlply r_ply

maply mdply mlply m_ply

Monday, November 12, 12

http://plyr.had.co.nz

Monday, November 12, 12

http://plyr.had.co.nz
http://plyr.had.co.nz

Monday, November 12, 12

